References
1
Attanasi OA.
De Crescentini L.
Filippone P.
Mantellini F.
Santeusanio S.
Arkivoc
2002,
274 ; and the references cited therein.
2a
Attanasi OA.
De Crescentini L.
Foresti E.
Galarini R.
Santeusanio S.
Serra-Zanetti F.
Synthesis
1995,
11:
1397
2b
Arcadi A.
Attanasi OA.
De Crescentini L.
Guidi B.
Rossi E.
Santeusanio S.
Gazz. Chim. Ital.
1997,
127:
609
2c
Arcadi A.
Attanasi OA.
Guidi B.
Rossi E.
Santeusanio S.
Chem. Lett.
1999,
59
2d
Attanasi OA.
Filippone P.
Foresti E.
Guidi B.
Santeusanio S.
Tetrahedron
1999,
55:
13423
2e
Arcadi A.
Attanasi OA.
Guidi B.
Rossi E.
Santeusanio S.
Eur. J. Org. Chem.
1999,
3117
2f
Arcadi A.
Attanasi OA.
Filippone P.
Giorgi G.
Rossi E.
Santeusanio S.
Tetrahedron Lett.
2003,
44:
8391
2g
Attanasi OA.
Carvoli G.
Filippone P.
Perrulli FR.
Santeusanio S.
Serri AM.
Synlett
2004,
1643
3a
Liebscher J. In
Houben-Weyl Methoden der Organischen Chemie
Vol E8b:
Georg Thieme Verlag;
Stuttgart:
1994.
p.1-399
3b
Bauer W.
Kühlein K. In
Houben-Weyl Methoden der Organische Chemie
Vol. E5:
Georg Thieme Verlag;
Stuttgart, New York:
1985.
p.1218-1279
4a
Nicolaou KC.
Ritzen A.
Namoto K.
Chem. Commun.
2001,
1523
4b
Zarantonello P.
Leslie CP.
Ferritto R.
Kazmierski WM.
Bioorg. Med. Chem. Lett.
2002,
12:
561
4c
Kohno J.
Kameda N.
Nishio M.
Kinumaki A.
Komatsubara S.
J. Antibiot.
1996,
49:
1063
5a
Bohlendorf B.
Herrmann M.
Hecht H.-J.
Sasse F.
Forche E.
Kunze B.
Reichenbach H.
Hofle G.
Eur. J. Org. Chem.
1999,
2601
5b
Ojika M.
Suzuki Y.
Tsukamoto A.
Sakagami Y.
Fudou R.
Yoshimura T.
Yamanaka S.
J. Antibiot.
1998,
51:
275
5c
Suzuki Y.
Ojika M.
Sakagami Y.
Fudou R.
Yamanaka S.
Tetrahedron
1998,
54:
11399
6a
Hecht SM.
J. Nat. Prod.
2000,
63:
158
6b
Manderville RA.
Ellena J.
Hecht SM.
J. Am. Chem. Soc.
1995,
117:
7891
7a
Akita H.
Sasaki T.
Kato K.
Suzuki Y.
Kondo K.
Sakasami Y.
Ojika M.
Fudou R.
Yamanaka S.
Tetrahedron
2004,
60:
4735
7b
Spiess A.
Heckmann G.
Bach T.
Synlett
2004,
131
7c
Bach T.
Heuser S.
J. Org. Chem.
2002,
67:
5789
7d
Bach T.
Heuser S.
Angew. Chem. Int. Ed.
2001,
40:
3184
7e
Boger DL.
Aquila BM.
Tse WC.
Searcey M.
Tetrahedron Lett.
2000,
41:
9493
7f
Nussbaumer T.
Neidlein R.
Heterocycles
2000,
52:
349
8
Ballini R.
Petrini M.
J. Chem. Soc., Perkin Trans. 1
1988,
2563
9
Representative Procedure for the Synthesis of 4, 5, 7 and 8.Preparation of 4b: Compound 3b (354 mg, 1 mmol), prepared as previously reported,
[2a]
was suspended in a (CH3)2CO-H2O mixture (9:1, 10 mL) and heated under reflux in the presence of Amberlyst 15 (500 mg) for 18 h. The resin was filtered off, washed with THF (3 × 10 mL) and, after evaporation of the solvents under reduced pressure, the solid residue was treated with Et2O and filtered in vacuo to obtain derivative 4b with a yield of 71%.
[2b]
Preparation of 5b: To a magnetically stirred solution of 4b (240 mg, 1 mmol) in CHCl3 (20 mL) was added tribromide on Amberlyst A-26 (1.36 g) and the reaction was allowed to stand at r.t. for 24 h (monitored by TLC). The fine solid suspended in the reaction medium was filtered and furnished the first crop of compound 5b. Then, the resin was washed with THF (4 × 20 mL) and the combined filtrates were evaporated under reduced pressure to afford an additional amount of brominated product in overall yield of 69%. Data for 2-bromo-1-(4-hydroxy-2′-methyl-2,4′-bi-1,3-thiazol-5-yl)ethanone 5b: dark yellow powder from CHCl3, mp 194 °C (dec.). IR (nujol): 3397, 3070, 1643, 1590, 1548, 1540 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 2.72 (s, 3 H, CH3), 4.58 (s, 2 H, CH2), 8.17 (s, 1 H, Ar), 11.78 (br s, 1 H, OH, D2O exch.). 13C NMR (100 MHz, DMSO-d
6): δ = 18.77, 33.88, 108.55, 120.97, 146.59, 164.67, 165.09, 167.99, 183.34. MS: m/z (%) = 320 (46) [ M+ - H], 318 (43), 238 (50), 225 (100). Anal. Calcd for C9H7BrN2O2S2: C, 33.86; H, 2.21; N, 8.78. Found: C, 33.68; H, 2.35; N, 8.61. Preparation of 7i: α-Bromo ketone derivative 5b (319 mg, 1 mmol) was added to a solution of ethyl thiooxamate (6f, 133 mg, 1 mmol) in EtOH (40 mL). The mixture was heated under reflux for 10 h (monitored by TLC) during which time a yellowish precipitate was formed. After partial removal of the solvent the suspension was filtered yielding the desired product 7i. Data for ethyl 4′-hydroxy-2-methyl-4,2′:5′,4′′-ter-1,3-thiazole-2′′-carboxylate (7i): yellow powder from EtOH, mp 224-234 °C (dec.). IR (nujol): 3395, 3118, 1717, 1587, 1510 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 1.33 (t, J = 7.4 Hz, 3 H, CH2 CH
3), 2.71 (s, 3 H, CH3), 4.37 (q, J = 7.4 Hz, 2 H, CH
2 CH3), 7.94 (s, 1 H, Ar), 8.07 (s, 1 H, Ar), 12.07 (s, 1 H, OH, D2O exch.). 13C NMR (100 MHz, DMSO-d
6): δ = 14.03, 18.80, 62.21, 103.26, 116.67, 118.84, 147.61, 148.48, 156.35, 156.98, 159.23, 159.87, 167.27. MS: m/z (%) = 353 (20) [M+], 229 (35), 201 (100). Anal. Calcd for C13H11N3O3S3: C, 44.18; H, 3.14; N, 11.89. Found: C, 44.06; H, 3.23; N, 11.76. Preparation of 7k: α-Bromo ketone derivative 5c (304 mg, 1 mmol) was added to a solution of 2-cyanothioacetamide (6d, 100 mg, 1 mmol) in EtOH (20 mL). The mixture was heated under reflux for 8 h (monitored by TLC) during which time brown needles precipitated. After cooling to r.t. the solid was filtered off yielding the bithiazole derivative 7k. Data for (4′-hydroxy-2′-thien-2-yl-4,5′-bi-1,3-thiazol-2-yl)acetonitrile (7k): brown crystals from EtOH, mp 220-223 °C. IR (nujol): 3140, 3088, 2255, 1580, 1554, 1511 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 4.60 (s, 2 H, CH2), 7.17 (dd, J = 3.9 Hz, J = 4.9 Hz, 1 H Ar), 7.69 (dd, J = 1.6 Hz, J = 3.9 Hz, 1 H Ar), 7.70 (s, 1 H Ar), 7.72 (dd, J = 1.6 Hz, J = 4.9 Hz, 1 H Ar), 12.00 (s, 1 H, OH, D2O exch.). 13C NMR (100 MHz, DMSO-d
6): δ = 21.39, 102.74, 113.57, 117.05, 126.83, 128.85, 129.09, 136.77, 146.08, 155.26, 158.49, 159.03. MS: m/z (%) = 305 (27) [M+], 196 (41), 168 (100). Anal. Calcd for C12H7N3OS3: C, 47.19; H, 2.31; N, 13.76. Found: C, 47.03; H, 2.47; N, 13.84. Preparation of 7m: α-Bromo ketone derivative 5a (298 mg, 1 mmol) was added portionwise to a stirred and heated solution of dithiooxamide (6g, 120 mg, 1 mmol) in EtOH (20 mL) monitoring, by TLC analysis, the disappearance of 5a before further addition. After reaction was complete (16 h) the solid formed was filtered off to furnish the bithiazole derivative 7m. Data for 4′-hydroxy-2′-phenyl-4,5′-bi-1,3-thiazole-2-carbothioamide (7m): brown powder from EtOH, mp >350 °C. IR (nujol): 3444, 3322, 3121, 1584, 1574, 1504 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 7.47-7.53 (m, 3 H, Ar), 7.86-7.88 (m, 2 H, Ar), 7.99 (s, 1 H, Ar), 9.70 and 10.17 (2 s, 2 H, NH2, D2O exch.), 11.90 (s, 1 H, OH, D2O exch.). 13C NMR (100 MHz, DMSO-d
6): δ = 103.20, 121.46, 125.24, 129.42, 130.41, 132.95, 147.72, 159.78, 161.29, 167.89, 186.34. Anal. Calcd for C13H9N3OS3: C, 48.88; H, 2.84; N, 13.15. Found: C, 48.96; H, 2.76; N, 13.09. Preparation of 8: Dithiooxamide (6g, 120 mg, 1 mmol) was added portionwise to a heated and stirred solution of α-bromo ketone derivative 5a (596 mg, 2 mmol) in EtOH (40 mL). The reaction was monitored by TLC checking for disappearance of 7m before each addition of 6g. After reaction was complete (24 h) the solid precipitate was collected by filtration furnishing tetrathiazol-4,4′′′-diol derivative 8. Data of 2,2′′′-diphenyl-5,4′:2′,2′′:4′′,5′′′-quater-1,3-thiazole-4,4′′′-diol(8): brown powder from EtOH, mp >350 °C. IR (nujol): 3124, 2926, 1667, 1584, 1570, 1504 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 7.46-7.55 (m, 6 H, Ar), 7.94-7.98 (m, 3 H, Ar), 12.01 (s, 2 H, OH, D2O exch.). Anal. Calcd for C24H14N4O2S4: C, 55.58; H, 2.72; N, 10.80. Found: C, 55.46; H, 2.85; N, 10.69.
10a
Zayed EM.
Elbannany AAA.
Ghozlan SAS.
Pharmazie
1985,
40:
194
10b
Jensen KA.
Crossland I.
Acta Chem. Scand.
1963,
17:
144
11
Dondoni A.
Fogagnolo M.
Medici A.
Negrini E.
Synthesis
1987,
185
12a
Sasaki H.
Chem. Pharm. Bull.
1994,
42:
1685
12b
Kane SA.
Natrajan A.
Hecht SM.
J. Biol. Chem.
1994,
269:
10899
12c
Kobayashi S.
Kuroda R.
Watanabe T.
Otsuka M.
Synlett
1992,
59
12d
Morii T.
Matsuura T.
Saito I.
Suzuki T.
Kuwahara J.
Sugiura Y.
J. Am. Chem. Soc.
1986,
108:
7089
13
Du L.
Chen M.
Zhang Y.
Shen B.
Biochemistry
2003,
42:
9731