References
1
Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products
Padwa A.
Pearson WH.
John Wiley and Sons, Inc.;
New York:
2002.
2a
Garner P.
Ho WB.
Grandhee SK.
Youngs WJ.
Kennedy VO.
J. Org. Chem.
1991,
56:
5893
2b
Garner P.
Ho WB.
Shin C.
J. Am. Chem. Soc.
1993,
115:
10742
2c
Monn JA.
Valli MJ.
J. Org. Chem.
1994,
59:
2773
2d
Pham VC.
Charlton JL.
J. Org. Chem.
1995,
60:
8051
2e
Fiswick CWG.
Foster RJ.
Carr RE.
Tetrahedron Lett.
1996,
37:
3915
2f
Daubié C.
Mutti S.
Tetrahedron Lett.
1996,
37:
3915
2g
Selvakumar N.
Azhagan AM.
Srinivas D.
Krishna GG.
Tetrahedron Lett.
2002,
43:
9175
2h
Coldham I.
Crapnell KM.
Fernandez J.-C.
Moseley JD.
Rabot R.
J. Org. Chem.
2002,
67:
6181
2i
Pandey G.
Laha JK.
Lakshmaiah G.
Tetrahedron
2002,
58:
3525
3a
Nyerges M.
Bitter I.
Kádas I.
Tóth G.
Tőke L.
Tetrahedron
1995,
51:
11489
3b
Nyerges M.
Rudas M.
Szántay C.
Bitter I.
Tőke L.
Tetrahedron
1997,
53:
3269
4
Fejes I.
Nyerges M.
Szöllőssy Á.
Blaskó G.
Tőke L.
Tetrahedron
2001,
57:
1129
5a
Fejes I.
Nyerges M.
Tőke L.
Tetrahedron Lett.
2000,
41:
7951
5b
Nyerges M.
Fejes I.
Tőke L.
Synthesis
2002,
1823
6a
Nyerges M.
Virányi A.
Tőke L.
Heterocycl. Commun.
2003,
239
6b
Virányi A.
Nyerges M.
Blaskó G.
Tőke L.
Synthesis
2003,
2655
7
Dubuffet T.
Newman-Tancerdi A.
Cussac D.
Audinot V.
Loutz A.
Millan MJ.
Lavielle G.
Bioorg. Med. Chem. Lett.
1999,
9:
2059
8a
Yan M.-C.
Jang Y.-J.
Yao C.-F.
Tetrahedron Lett.
2001,
42:
2717
8b
Yan M.-C.
Jang Y.-J.
Kuo W.-Y.
Tu Z.
Shen K.-H.
Cuo T.-S.
Ueng C.-H.
Yao C.-F.
Heterocycles
2002,
57:
1033
9
Worral DE.
Org. Synth., Coll. Vol. I
1941,
413
10a
Tsuge O.
Kanemasa S.
Ohe M.
Takenaka S.
Chem. Lett.
1986,
973
10b
Tsuge O.
Kanemasa S.
Ohe M.
Takenaka S.
Bull. Chem. Soc. Jpn.
1987,
60:
4079
10c
Nyerges M.
Balázs L.
Bitter I.
Kádas I.
Kövesdi I.
Tőke L.
Tetrahedron
1995,
51:
6783
10d
Joucla M.
Mortier J.
Bull. Soc. Chim. Fr.
1988,
579
11
General Procedure: A mixture of sarcosine (2.5 equiv) or N-benzyl-glycine (2.5 equiv), paraformaldehyde (6 equiv), and the corresponding 3-nitrochromene derivatives (3a-e, 1 equiv) was heated under reflux in toluene (10 mL for 1 mmol of dipolarophile). The water formed was removed by the aid of a Dean-Stark trap. After completion of the reaction (judged by TLC) the reaction mixture was filtered through a pad of Celite and the solvent was evaporated in vacuo. The residue crystallized from Et2O to give 4a-j. The reaction times and yields (based on the dipolarophiles) are summarized in Table
[1]
. All new compounds afforded correct elemental analyses and spectroscopic data, for example:
2-Methyl-3a-nitro-4-phenyl-benzopirano[3,4-
c
]-pyrrolidine (
4a): 1H NMR (250 MHz, CDCl3): δ = 7.44 (5 H, m, Ph-H), 7.23 (2 H, m, Ar-H), 7.04 (2 H, m, Ar-H), 5.01 (1 H, s, H-4), 4.03 (1 H, t, J = 8.5 Hz, H-9b), 3.62 (1 H, d, J = 11.4 Hz, H-3), 3.50 (1 H, t, J = 8.5 Hz, H-1), 2.85 (1 H, d, J = 11.4 Hz, H-3), 2.71 (1 H, t, J = 8.5 Hz, H-1), 2.41 (3 H, s, NMe). 13C NMR (62.5 MHz, CDCl3): δ = 154.0 (q, C-5a), 134.0 (Ph-1′C), 129.4 (CH, C-7), 128.5 (2 × CH, Ph-2′ and 6′C), 128.3 (CH, C-9), 127.8 (CH, Ph-4′C), 126.8 (2 × CH, Ph-3′ and 5′C), 122.6 (q, C-9a), 122.5 (CH, C-8), 117.6 (CH, C-6), 95.9 (q, C-3a), 80.1 (CH, C-4), 62.8 (CH2), 61.8 (CH2), 43.3 (CH, H-9b), 41.3 (NCH3). IR (KBr): 2976, 2947, 2823, 1535, 1489, 1479, 1452, 1371, 1254, 1238, 1149, 1045, 1024 cm-1.
2-Benzyl-4-(4-chlorophenyl)-3a-nitro-benzopirano[3,4-
c
]-pyrrolidine (
4f): 1H NMR (250 MHz, CDCl3): δ = 7.37-7.23 (8 H, m, Ar-H), 7.21 (1 H, t, J = 7.5 Hz, H-7), 7.16 (2 H, d, J = 8.5 Hz, Ar4-3′ and 5′H), 7.02 (1 H, t, J = 7.5 Hz, H-8), 7.00 (1 H, d, J = 7.5 Hz, H-6), 5.03 (1 H, s, H-4), 3.97 (1 H, t, J = 8.4 Hz, H-9b), 3.71 (1 H, d, J = 12.9 Hz, CH2Ph), 3.57 (1 H, d, J = 12.9 Hz, CH2Ph), 3.46 (1 H, t, J = 8.4 Hz, H-1), 3.41 (1 H, d, J = 11.4 Hz, H-3), 2.87 (1 H, d, J = 11.4 Hz, H-3), 2.86 (1 H, t, J = 8.4 Hz, H-1). 13C NMR (62.5 MHz, CDCl3): δ = 154.0 (q, C-5a), 137.6 (Bn-1′C), 135.5 (q, Ar4-4′C), 132.8 (q, Ar4-1′C), 128.9 (2 × CH), 128.8 (2 × CH), 128.7 (2 × CH), 128.4 (2 × CH), 128.1 (CH, C-9), 127.8 (Bn-4′C), 123.1 (CH, C-8), 122.9 (q, C-9a), 117.8 (CH, C-6), 94.9 (q, C-3a), 79.6 (CH, C-4), 60.7 (CH2), 59.2 (CH2), 59.1 (CH2), 42.6 (CH, H-9b). IR (KBr): 3061, 3025, 2968, 2920, 2824, 1537, 1490, 1455, 1380, 1260, 1233, 1210, 1153, 1092, 1057, 1014 cm-1.
12
Grigg R.
Gunaratne HQN.
Sridharan V.
Thianpatanagul S.
Tetrahedron Lett.
1983,
24:
4363
13
Grigg R.
Kemp J.
Tetrahedron Lett.
1980,
21:
2461
14a
Tsuge O.
Kanemasa S.
Yoshioka MJ.
J. Org. Chem.
1988,
53:
1384
14b
Nyerges M.
Rudas M.
Tóth G.
Herényi B.
Bitter I.
Tőke L.
Tetrahedron
1995,
51:
13321
14c
Kanemasa S.
Synlett
2002,
1371
14d
Longmire JM.
Wang B.
Zhang X.
J. Am. Chem. Soc.
2002,
124:
13400
15
General Procedure: The corresponding 3-nitrochromene derivatives (3a-e, 10 mmol) were dissolved in dry toluene (50 mL) and ethyl (4-chlorobenzylideneamino)acetate (2.47 g, 11 mmol) or methyl 2-(4-chlorobenzylideneamino)-3-phenyl-propionate (3.32 g, 11 mmol), silver acetate (2.50 g, 15 mmol), and Et3N (1.11 g, 1.6 mL, 11 mmol) was added. The reaction mixture was stirred at r.t. for 12 h. After the completion of the reaction (judged by TLC) aq NH4Cl solution (25 mL) was added to the reaction mixture and this was washed with H2O (2 × 20 mL) and brine (20 mL). The organic layer was dried over MgSO4, evaporated and the residue was trituated with Et2O. The crystallized product was collected to yield a white powder, which could be recrystallized from EtOH to give 6a-j. The reaction times and yields (based on the dipolarophiles) are summarized in Table
[2]
. Selected data for representative examples:
Ethyl 3-(4-chlorophenyl)-3a-nitro-4-phenyl-benzopirano[3,4-
c
]-pyrrolidine-1-carboxylate (
6a): 1H NMR (250 MHz, CDCl3): δ = 7.51 (d, 1 H, J = 7.6 Hz, H-9), 7.35 (2 H, d, J = 8.7 Hz, Ar3-3′ and 5′H), 7.27 (2 H, d, J = 8.7 Hz, Ar3-2′ and 6′H), 7.12 (7 H, m, Ar-H), 6.77 (d, 1 H, J = 7.5 Hz, H-6), 5.48 (1 H, s, H-4), 4.88 (1 H, br m, H-3), 4.74 (1 H, d, J = 3.6 Hz, H-9b), 4.43 (2 H, q, J = 7.1 Hz, OCH2), 4.05 (1 H, br s, H-1), 2.99 (1 H, br s, H-2), 1.41 (3 H, t, J = 7.1 Hz, CH2CH3). 13C NMR (62.5 MHz, CDCl3): δ = 171.8 (q, C=O), 149.7 (q, C-5a), 135.4 (q, Ar3-4′C), 134.7 (q, Ar3-1′C), 129.1 (2 × CH, Ar3-2′ and 6′C), 129.0 (CH, C-7), 128.9 (CH, C-9), 128.8 (CH, Ar4-1′C), 128.5 (2 × CH, Ar3-3′ and 5′C), 128.4 (q, C-9a), 128.3 (2 × CH, Ar4-2′ and 6′C), 128.2 (2 × CH, Ar4-3′ and 5′C), 124.8 (CH, Ar4-4′C), 123.2 (CH, C-8), 118.2 (CH, C-6), 96.4 (q, C-3a), 75.5 (CH, C-4), 69.4 (CH, C-3), 68.3 (CH, C-1), 62.2 (CH2), 45.6 (CH, H-9b), 14.3 (CH3). IR (KBr): 3334, 2979, 1733, 1586, 1540, 1487, 1453, 1368, 1298, 1228, 1212, 1114, 1094, 1015 cm-1.
Methyl 1-benzyl-3,4-
bis
-(4-chlorophenyl)-3a-nitro-benzopirano[3,4-
c
]-pyrrolidine-1-carboxylate (
6f): 1H NMR (250 MHz, CDCl3): δ = 7.76 (1 H, dd, J = 1.7 and 7.8 Hz, H-9), 7.35 (2 H, d, J = 8.6 Hz, Ar3-3′ and 5′H), 7.27 (2 H, d, J = 8.6 Hz, Ar3-2′ and 6′H), 7.15 (4 H, m, Bn-H and H-7), 7.14 (2 H, d, J = 8.5 Hz, Ar4-3′ and 5′H), 7.10 (1 H, dt, J = 1.7 and 7.8 Hz, H-8), 7.05 (2 H, d, J = 8.5 Hz, Ar4-2′ and 6′H), 6.96 (2 H, m, Bn-H), 6.76 (1 H, dd, J = 1.7 and 7.8 Hz, H-6), 5.55 (1 H, s, H-4), 5.10 (1 H, s, H-9b), 5.09 (1 H, d, J = 7.8 Hz, H-3), 3.78 (3 H, s, OMe), 2.94 (1 H, br d, J = 7.8 Hz, H-2), 2.81 (1 H, d, J = 13.7 Hz, α-CH2), 2.37 (1 H, d, J = 13.7 Hz, β-CH2). 13C NMR (125 MHz, CDCl3): δ = 174.4 (q, C=O), 152.1 (q, C-5a), 136.0 (q, Bn-1′C), 135.4 (q, Ar3-4′C), 134.9 (q, Ar4-4′C), 133.3 (q, Ar3-1′C), 132.9 (q, Ar4-1′C), 130.6 (CH, C-9), 129.9 (2 × CH, Bn-2′ and 6′C), 129.6 (2 × CH, Ar4-2′ and 6′C), 129.3 (CH, C-7), 129.2 (2 × CH, Ar3-3′ and 5′C), 128.5 (2 × CH, Bn-3′ and 5′C), 128.3 (2 × CH, Ar4-3′ and 5′C), 128.1 (2 × CH, Ar3-2′ and 6′C), 127.0 (CH, Bn-4′C), 123.1 (CH, C-8), 122.2 (q, C-9a), 118.7 (CH, C-6), 98.5 (q, C-3a), 77.0 (CH, C-4), 72.2 (q, C-1), 67.4 (CH, C-3), 52.7 (OCH3), 49.8 (CH, C-9b), 42.2 (CH2). IR (KBr): 3341, 3031, 1751, 1601, 1542, 1491, 1456, 1436, 1239, 1208, 1130, 1111, 1096, 1079, 1042, 1014, 1006 cm-1.
16a
Bende Z.
Simon K.
Tóth G.
Tőke L.
Weber L.
Liebigs Ann. Chem.
1982,
924
16b
Bende Z.
Bitter I.
Tőke L.
Weber L.
Tóth G.
Janke F.
Liebigs Ann. Chem.
1982,
2146
16c
Bende Z.
Tőke L.
Weber L.
Tóth G.
Janke F.
Csonka G.
Tetrahedron
1983,
40:
369
16d
Tóth G.
Tischer T.
Bende Z.
Szejtli G.
Tőke L.
Monatsh. Chem.
1990,
121:
529
16e
Janke F.
Himmelreich U.
Tóth G.
Tischer T.
Bende Z.
Tőke L.
J. Heterocycl. Chem.
1991,
28:
867
16f
Fejes I.
Nyerges M.
Tőke L.
Pak CS.
Tetrahedron
2000,
56:
639
17
General Procedure for the Preparation of Compounds 8: The corresponding 3-nitrochromene (3, 0.80 mmol) and 6,7-dimethoxy-(2-methoxycarbonylmethyl)-3,4-dihydro-isoquinolinium bromide (0.29 g, 0.85 mmol) was dissolved in dry MeOH (10 mL) and Et3N (0.14 mL, 0.10 g, 1.00 mmol) was added under argon atmosphere. The reaction mixture was stirred at r.t. for 24 h. The solvent was removed in vacuo, the residue was suspended in Et2O (20 mL). The ethereal solution was washed with H2O (10 mL) and brine (5 mL), dried over MgSO4 and evaporated in vacuo to yield a white solid, which was recrystallized from EtOH to give 8a,b,d. The reaction times and yields are summarized in Table
[4]
. Selected data for representative example:
Methyl 8,9-dimethoxy-6a-nitro-6-(4-methoxyphenyl)-6a,6b,11,12,14,14a-hexahydro-6
H
-chromeno[3′,4′:3,4]pyrrolidino[2,1-
a
]isoquinoline-14-carboxylate (
8b): 1H NMR (500 MHz, CDCl3): δ = 7.18 (1 H, t, J = 7.5 Hz, H-3), 7.06 (1 H, d, J = 7.5 Hz, H-1), 6.93 (1 H, d, J = 7.5 Hz, H-4), 6.90 (1 H, t, J = 7.5 Hz, H-2), 6.85 (2 H, d, J = 8.2 Hz, Ar6-2′ and 6′H), 6.51 (1 H, s, H-10), 6.46 (2 H, d, J = 8.2 Hz, Ar6-3′ and 5′H), 6.10 (1 H, s, H-7), 5.77 (1 H, s, H-6), 4.86 (1 H, s, H-6b), 4.12 (1 H, d, J = 11.3 Hz, H-14a), 4.11 (1 H, d, J = 11.3 Hz, H-14), 3.83 (3 H, s, OMe), 3.70 (3 H, s, OMe), 3.36 (3 H, s, OMe), 3.32 (3 H, s, OMe), 3.18 (1 H, m, H-11), 3.01 (1 H, m, H-12), 2.70 (1 H, m, H-12), 2.62 (1 H, m, H-11). 13C NMR (125 MHz, CDCl3): δ = 170.4 (q, C=O), 159.6 (q, Ar6-4′C), 153.6 (q, C-4a), 147.8 (q, C-9), 146.7 (q, C-8), 129.9 (2 × CH, Ar6-2′ and 6′C), 129.4 (CH, C-1), 128.8 (CH, C-3), 128.0 (q, Ar6-1′C), 127.5 (q, C-10a), 127.4 (C-14b), 123.4 (C-6c), 120.5 (CH, C-2), 116.2 (CH, C-4), 113.2 (C-10), 112.9 (2 × CH, Ar6-3′ and 5′C), 109.8 (CH, C-7), 90.4 (q, C-6a), 75.8 (CH, C-6), 67.7 (CH, C-14), 65.7 (C-6b), 55.8 (OMe), 55.2 (OMe), 54.6 (OMe), 51.7 (OMe), 47.2 (CH, C-14a), 46.8 (C-12), 29.7 (C-11). IR (KBr): 2990, 2945, 2913, 2835, 1749, 1612, 1585, 1552, 1519, 1490, 1459, 1437, 1353, 1249, 1212, 1193, 1150, 1117, 1076, 1042, 1021 cm-1.