Subscribe to RSS
DOI: 10.1055/s-2004-836030
Microwave-Enhanced Cadogan Cyclization: An Easy Access to the 2-Substituted Carbazoles and other Fused Heterocyclic Systems
Publication History
Publication Date:
29 November 2004 (online)
Abstract
A microwave-enhanced Suzuki-Miyaura cross-coupling reaction in combination with a microwave-assisted Cadogan reductive cyclization is presented as an easy access to a variety of 2-substituted carbazoles and other fused heterocyclic systems. Microwave irradiation was found very useful in minimizing the proto-deboronation issues in the cross-coupling reaction, and enhances the rate of reductive cyclization in a dramatic manner.
Key words
microwave-enhanced - Suzuki-Miyaura cross-coupling reaction - Cadogan reductive cyclization
-
1a
Lee JH.Park JW.Chot SK. Synth. Met. 1997, 88: 31 -
1b
Cho CS.Wang WT. Macromol. Chem. Phys. 2001, 202: 2864 -
1c
Thomas JKR.Jian LT. J. Am. Chem. Soc. 2001, 123: 9404 -
2a
Romeo DB.Schaer M.Leclerc M.Ades D.Siove A.Zuppiroli L. Synth. Met. 1996, 80: 271 -
2b
Morin J.-F.Leclerc M. Macromolecules 2002, 35: 8413 ; and references cited therein - 3
McClenaghan ND.Passalacqua R.Loiseau F.Campagna S.Verheyde B.Hameurlaine A.Dehaen W. J. Am. Chem. Soc. 2003, 125: 5356 - 4 For a recent review about the synthesis of biologically active carbazole alkaloids, see:
Knölker H.-J.Reddy KR. Chem. Rev. 2002, 102: 4303 -
5a
Cao R.Chen Q.Hou X.Chen H.Guan H.Ma Y.Peng W.Xu A. Bioorg. Med. Chem. 2004, 12: 4613 -
5b
Kanekiyo N.Kuwada T.Choshi T.Nobuhiro J.Hibino S. J. Org. Chem. 2001, 66: 8793 -
5c
Hino T.Nakagawa M. J. Heterocycl. Chem. 2000, 37: 567 -
5d
Beria I,Cozzi P,Baraldi PG,Spalluto G, andGeroni MC. inventors; Brit. UK Pat. Appl. GB 2344818 CAN 133:321873. -
5e
Jakobsen P,Kanstrup A,Faarup P,Olesen PH, andLundbech JM. inventors; U.S. 5,536,721. -
5f
Olesen PH.Hansen JB.Engelstoft M. J. Heterocycl. Chem. 1995, 32: 1641 -
6a
Joshi BS.Gawad DH. Indian J. Chem. 1974, 12: 437 -
6b
Bhattacharyya P.Chakraborty A. Phytochemistry 1984, 23: 471 -
6c
Chakraborty DP.Das AP. Sci. Cult. (India) 1966, 32: 181 -
6d
Ruangrungsi N.Ariyaprayoon J.Lange GL.Organ MG. J. Nat. Prod. 1990, 53: 946 -
6e
Jash SS.Biswas GK.Bhattacharyya SK.Bhattacharyya P.Chakraborty A.Choudhury BK. Phytochemistry 1992, 31: 2503 -
7a
Cadogan GIJ.Carmen-Wood M. Proc. Chem. Soc. 1962, 361 -
7b
Cadogan GIJ.Carmen-Wood M.Makie RK.Searle RJG. J. Chem. Soc. 1965, 4831 -
7c
Cadogan GIJ. Organophosphorus Reagents in Organic Synthesis Academic Press Inc.; London: 1979. p.279 -
8a
Akermark B.Eberson L.Jonsson E.Patterson E. J. Org. Chem. 1975, 40: 1365 -
8b
Ames DE.Bull D. Tetrahedron 1982, 38: 383 -
8c
Ames DE.Opalko A. Tetrahedron 1984, 40: 1919 -
8d
Hegedus LS. Angew. Chem., Int. Ed. Engl. 1988, 27: 1113 ; Angew. Chem. 1988, 100, 1147 -
9a
Pizzotti M.Cenini S.Quici S.Tollari S. J. Chem. Soc., Perkin Trans. 2 1994, 913 -
9b
Smitrovich JH.Davies IW. Org. Lett. 2004, 6: 533 -
10a
Adam D. Nature 2003, 421: 571 -
10b
Kaval N.Van der Eycken J.Caroen J.Dehaen W.Strohmeier GA.Kappe CO.Van der Eycken E. J. Comb. Chem. 2003, 5: 560 -
10c
Lew A.Krutzik PO.Hart ME.Chamberlin AR. J. Comb. Chem. 2002, 2: 95 -
10d
Kappe CO. Curr. Opin. Chem. Biol. 2002, 6: 314 -
10e
Lidström P.Westman J.Lewis A. Comb. Chem. High Throughput Screening 2002, 5: 441 -
10f
Van der Eycken E.Appukkuttan P.De Borggraeve W.Dehaen W.Dallinger D.Kappe CO. J. Org. Chem. 2002, 67: 7904 -
11a
Bouchard J.Wakim S.Leclerc M. J. Org. Chem. 2004, 69: 5705 -
11b
Morin J.-F.Leclerc M. Macromolecules 2001, 34: 4680 -
11c
Holzapfel CW.Dwyer C. Heterocycles 1998, 48: 1513 - 12
Monovich LG.Le Huérou Y.Rönn M.Molander GA. J. Am. Chem. Soc. 2000, 122: 52 ; and references cited therein -
13a
Wright SW.Hageman DL.McClure LD. J. Org. Chem. 1994, 59: 6095 -
13b
Gronowitz S.Hörnfledt A.-B.Yang Y.-H. Chem. Scr. 1986, 26: 383 -
13c
Watanabe T.Miyaura N.Suzuki A. Synlett 1992, 207 - 14
Appukkuttan P.Orts AB.Chandran RP.Goeman JL.Van der Eycken J.Dehaen W.Van der Eycken E. Eur. J. Org. Chem. 2004, 3277 - 15
Seaman W. J. Am. Chem. Soc. 1931, 53: 711 -
17a
Kikugawa Y.Aoki Y.Sakamoto T. J. Org. Chem. 2001, 66: 8612 -
17b
Hewlins MJE.Jackson AH.Long A.Campos A.-O.Shannon PVR. J. Chem. Res., Synop. 1986, 8: 292 -
17c
Patel BPJ. J. Ind. Chem. Soc. 1985, 62: 534 -
17d
Clancy MG.Hesabi MM.Otto M.-C. J. Chem. Soc., Perkin Trans. 1 1984, 3: 429
References
CEM-Discover, CEM Corporation P.O. Box 200 Matthews, NC 28106.
18
General Procedure for the Microwave-Enhanced Suzuki Reaction and Cadogan Cyclization - Synthesis of 8
H
-Thieno[2,3-
b
]indole (
4q): 3-Bromothiophene (2q, 0.041 g, 0.25 mmol), 2-nitrophenylboronic acid (0.054 g, 0.325 mmol), NaHCO3 (0.063 g, 0.75 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.015 g, 5 mol%) were suspended in DMF (1.5 mL) and H2O (1.5 mL) in a 10 mL glass vial equipped with a small stirring magnet. The vial was sealed tightly with an aluminium-Teflon® crimp top and the mixture was irradiated in the cavity of a mono-mode CEM®-Discover machine for 15 min at a pre-selected temperature of 150 °C, using a maximum irradiation power of 100 W. After the reaction, the vial was cooled to 50 °C by gas jet cooling. The crude mixture was partitioned between Et2O and H2O (25 mL each) and the aqueous layer was extracted with Et2O (3 × 20 mL). The combined organic layers were dried on MgSO4 and solvents were removed under vacuum to yield the crude product as yellow oil. Column chromatography [silica gel, heptane-EtOAc (9:1)] afforded the biaryl compound 3q (0.046 g, 890%) as yellowish oily material.
The nitro compound 3q was suspended in triethyl phosphate (3 mL) in a tightly sealed 10 mL glass vial and was irradiated at a maximum irradiation power of 300 W for 15 min at a pre-selected temperature of 210 °C. After the reaction, the vial was cooled to 50 °C by gas jet cooling and the contents were transferred to a 50 mL flask with the help of EtOAc (10 mL). This mixture was then heated to 80 °C with an excess of HCl (6 N, 10 mL) and maintained at the temperature for 3 h. After cooling to r.t., the mixture was partitioned between H2O and EtOAc (20 mL each) and the aqueous layer was further extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over MgSO4 and solvents were removed under reduced pressure, and further purification by column chromatography (silica gel, heptane-EtOAc, 9:1) afforded the thieno-indole 4q (0.0296 g, 76%). 1H NMR (300 MHz, CDCl3): δ = 6.92 (d, 1 H, J = 5.2 Hz), 7.19-7.27 (m, 2 H), 7.36 (d, 1 H, J = 5.2 Hz), 7.41 (d, 1 H, J = 8.0 Hz), 7.81 (dd, 1 H, J = 7.6, 0.8 Hz), 8.22 (br s, 1 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 111.2, 117.1, 117.6, 119.3, 119.9, 122.2, 122.5, 125.6, 141.2, 142.2 ppm. DEPT-NMR (75 MHz, CDCl3): δ = 111.2, 117.1, 117.6, 119.3, 122.5, 125.6 ppm. MS (EI): 173 [M+]. HRMS (EI): m/z calcd for C10H07NS [M+]: 173.02992; found: 173.02986.