Subscribe to RSS
DOI: 10.1055/s-2004-836037
Enantioselective Approach to Tropane Skeleton: Synthesis of (1S,5S,6R)-6-Hydroxy-8-methyl-8-azabicyclo[3.2.1]octan-3-one
Publication History
Publication Date:
29 November 2004 (online)
Abstract
The original and classical Mannich-type construct for the tropane skeleton, developed over half a century ago by Willstätter, Robinson and Schöpf as the first biomimetic synthesis, has been employed for the enantioselective construction of 6β-hydroxytropinone. The component compounds of this novel one-step Mannich-type condensation sequence are acetonedicarboxylic acid, methylamine hydrochloride and (2R)-hydroxy-1,4-butanedial, in turn prepared from tert-butyl (R)-3-hydroxy-4-pentenoate as the starting chiral synthon.
Key words
tropane alkaloids - kinetic resolution - stereoselective synthesis - multicomponent reactions - tropinones
- 1
Singh S. Chem. Rev. 2000, 100: 925 - 2
Fodor G.Dharanipragada R. Nat. Prod. Rep. 1994, 11: 443 - 3
Lounasmaa M.Tamminen T. Alkaloids 1993, 44: 1 - 4
Isomura S.Hoffman TZ.Wirsching P.Janda KD. J. Am. Chem. Soc. 2002, 124: 3661 - 5
Willstätter R. Ber. 1896, 29: 936 - 6
Willstätter R. Liebigs Ann. Chem. 1903, 326: 23 - 7
Robinson R. J. Chem. Soc. 1917, 111: 762 - 8
Schöpf C.Lehman G. Liebigs Ann. 1935, 518: 1 - 9
Mikami K.Ohmura H. Chem. Commun. 2002, 2626 ; and references quoted therein - 10
Mans DM.Pearson WH. Org. Lett. 2004, 3305 ; and references quoted therein - 11
Albrecht U.Armbrust H.Langer P. Synlett 2004, 143 - 12
Majewski M.Lazny R. J. Org. Chem. 1995, 60: 5825 - 13
Majewski M.Lazny R.Ulaczyk A. Can. J. Chem. 1997, 75: 754 - 14
Chol Lee J.Lee K.Kun Cha J. J. Org. Chem. 2000, 65: 4773 - 15
Kozikowski AP.Simoni D.Manfredini S.Roberti M.Stoelwinder J. Tetrahedron Lett. 1996, 37: 5333 - 16
Stoll A.Becker B.Jucker E. Helv. Chim. Acta 1952, 35: 1263 - 17
Van Tamelen EE.Barth P.Lornitzo F. J. Am. Chem. Soc. 1956, 78: 5442 - 18
Dewar GH.Parfitt RT.Sheh L. Eur. J. Med. Chem. 1985, 228 - 19
He X.-S.Brossi A. J. Heterocycl. Chem. 1991, 28: 1741 - 20
Villacampa M.Martínez M.González-Trigo G.Söllhuber MM. J. Heterocycl. Chem. 1992, 29: 1541 - 21
Chen Z.Meltzer PC. Tetrahedron Lett. 1997, 38: 1121 - 22
Zhao L.Kozikowski AP. Tetrahedron Lett. 1999, 40: 4961 - 23
Zhao L.Johnson KM.Zhang M.Flippen-Anderson J.Kozikowski AP. J. Med. Chem. 2000, 43: 3283 - 24
Cramer N.Laschat S.Baro A. Synlett 2003, 2178 -
25a
Keck GE.Palani A.McHardy SF. J. Org. Chem. 1994, 59: 3113 -
25b
Breuilles P.Oddon G.Uguen D. Tetrahedron Lett. 1997, 38: 6607 -
25c
Oddon G.Uguen D.De Cian A.Fischer J. Tetrahedron Lett. 1998, 39: 1149 -
26a
Solladié G.Wilb N.Bauder C.Bonini C.Viggiani L.Chiummiento L. J. Org. Chem. 1999, 64: 5447 -
26b
Solladié G.Wilb N.Bauder C. Tetrahedron Lett. 2000, 41: 4189 -
27a
Kumar A.Dittmer DC. J. Org. Chem. 1994, 59: 4760 -
27b
Song J.Hollingsworth RI. Tetrahedron: Asymmetry 2001, 12: 387 - 28
Zibuck R.Streiber JM. J. Org. Chem. 1989, 54: 4717 - 29
Vrielynck S.Vandewalle M.García AM.Mascareňas JL.Mouriňo A. Tetrahedron Lett. 1995, 36: 9023 - 30
Tan C.-H.Holmes AB. Chem.-Eur. J. 2001, 7: 1845 - 31
González-García E.Helaine V.Klein G.Schuermann M.Sprenger GA.Fessner W.-D.Reymond J.-L. Chem.-Eur. J. 2003, 9: 893 - 34
Chen Z.Gonzalez MD.Blundell P.Meltzer PC. Tetrahedron Lett. 1997, 38: 6823 - 35
Barco A.Benetti S.De Risi C.Marchetti P.Pollini GP.Zanirato V. Tetrahedron 1999, 55: 5923 - 36
Justice DE.Malpass JR. Tetrahedron Lett. 1995, 36: 4689
References
Typical Procedure for the Synthesis of (+)-1.
A pentane solution of racemic alcohol (10.0 mmol) and vinyl acetate (20.0 mmol) was stirred at r.t. for 19 h in the presence of PS-C (Pseudomonas cepacia lipase immobilized on ceramic particles). The suspension was filtered to recover the supported enzyme (we found that it might be reused several times without loss of activity) and the solvent was evaporated. Column chromatography of the residue on silica gel (Et2O-petroleum ether 2:8) yielded (+)-1 (4.6 mmol) with >95% ee.
All new compounds gave satisfactory analytical and spectroscopic data. Compound (+)-5: [α]D 25 +18.4 (c 2.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.71 (m, 1 H), 1.91 (m, 1 H), 2.67 (d, J = 2.0 Hz, 1 H), 3.34 (s, 3 H), 3.35 (s, 3 H), 3.42 (s, 3 H), 3.43 (s, 3 H), 3.80 (m, 1 H), 4.16 (d, J = 6.0 Hz, 1 H), 4.62 (dd, J = 5.2 and 6.5 Hz, 1 H). Compound (-)-6: 1H NMR (400 MHz, CDCl3): δ = 1.90-2.00 (m, 1 H), 2.00-2.05 (m, 1 H), 2.05-2.08 (m, 1 H), 2.14-2.19 (m, 1 H), 2.61 (s, 3 H), 2.60-2.68 (m, 2 H), 3.00 (br s, 1 H), 3.34 (d, J = 4.8 Hz, H-5), 3.56 (m, H-1), 4.03 (dd, J = 2.4 and 6.8 Hz, H-6). 13C NMR (100 MHz, CDCl3): δ = 34.6, 41.0, 41.4, 43.4, 58.9, 68.2, 75.1, 207.8.