ABSTRACT
It remains unknown whether dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) have a physiological role other than serving as metabolic intermediates in androgen synthesis. Apart from intracellular metabolism, there is no convincing cellular mechanism of action for physiological concentrations of DHEA(S). Unlike other major steroids, a receptor for DHEA(S) has not been definitively isolated. This article will review the evidence supporting a receptor-dependent basis for the direct physiological effects of DHEA(S). The data supporting an intracellular receptor for DHEA(S) are relatively weak and do not allow us to determine whether DHEA(S) directly, or a metabolite of DHEA(S), acts as a direct receptor ligand. Recent data strongly support a plasma membrane receptor for DHEA, but this potential receptor is yet to be isolated. Definitive characterization of the molecular mechanism (receptor or otherwise) of DHEA(S) action is necessary before we can determine whether DHEA(S) has a biological role other than as an androgen precursor.
KEYWORDS
Dehydroepiandrosterone - receptor - steroid - androgen
REFERENCES
1
Longcope C.
Dehydroepiandrosterone metabolism.
J Endocrinol.
1996;
150
S125-S127
2
Tchernof A, Labrie F.
Dehydroepiandrosterone, obesity and cardiovascular disease risk: a review of human studies.
Eur J Endocrinol.
2004;
151
1-14
3
Labrie F, Belanger A, Van L T et al..
DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging.
Steroids.
1998;
63
322-328
4
Morissette M, Dicko A, Pezolet M, Callier S, Di Paolo T.
Effect of dehydroepiandrosterone and its sulfate and fatty acid ester derivatives on rat brain membranes.
Steroids.
1999;
64
796-803
5
Peng W, Hoidal J R, Farrukh I S.
Role of a novel KCa opener in regulating K+ channels of hypoxic human pulmonary vascular cells.
Am J Respir Cell Mol Biol.
1999;
20
737-745
6
Gordon G, Mackow M C, Levy H R.
On the mechanism of interaction of steroids with human glucose 6-phosphate dehydrogenase.
Arch Biochem Biophys.
1995;
318
25-29
7
Meikle A W, Dorchuck R W, Araneo B A et al..
The presence of a dehydroepiandrosterone-specific receptor binding complex in murine T cells.
J Steroid Biochem Mol Biol.
1992;
42
293-304
8
Liu D, Dillon J S.
Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by a specific plasma membrane receptor coupled to Galpha(i2,3).
J Biol Chem.
002;
277
21379-21388
9
Ram P A, Waxman D J.
Dehydroepiandrosterone 3 beta-sulphate is an endogenous activator of the peroxisome-proliferation pathway: induction of cytochrome P-450 4A and acyl-CoA oxidase mRNAs in primary rat hepatocyte culture and inhibitory effects of Ca(2+)-channel blockers.
Biochem J.
1994;
301
753-758
10
Zhang L, Li B S, Ma W et al..
Dehydroepiandrosterone (DHEA) and its sulfated derivative (DHEAS) regulate apoptosis during neurogenesis by triggering the Akt signaling pathway in opposing ways.
Brain Res Mol Brain Res.
2002;
98
58-66
11
Reuter S, Mayer D.
Transport of dehydrosterone and dehydroepiandrosterone sulphate into rat hepatocytes.
J Steroid Biochem Mol Biol.
1995;
54
227-235
12
Tsai M J, O'Malley B W.
Molecular mechanisms of action of steroid/thyroid receptor superfamily members.
Annu Rev Biochem.
1994;
63
451-486
13
Okabe T, Haji M, Takayanagi R et al..
Up-regulation of high-affinity dehydroepiandrosterone binding activity by dehydroepiandrosterone in activated human T lymphocytes.
J Clin Endocrinol Metab.
1995;
80
2993-2996
14
McLachlan J A, Serkin C D, Bakouche O.
Dehydroepiandrosterone modulation of lipopolysaccharide-stimulated monocyte cytotoxicity.
J Immunol.
1996;
156
3328-335
15
Williams M R, Ling S, Dawood T et al..
Dehydroepiandrosterone inhibits human vascular smooth muscle cell proliferation independent of ARs and ERs.
J Clin Endocrinol Metab.
2002;
87
176-181
16
Kawai S, Yahata N, Nishida S, Nagai K, Mizushima Y.
Dehydroepiandrosterone inhibits B16 mouse melanoma cell growth by induction of differentiation.
Anticancer Res.
1995;
15
427-431
17
Kalimi M, Regelson W.
Physicochemical characterization of [3H] DHEA binding in rat liver.
Biochem Biophys Res Commun.
1988;
156
22-29
18
Mohan P F, Cleary M P.
Studies on nuclear binding of dehydroepiandrosterone in hepatocytes.
Steroids.
992;
57
244-247
19
Nakashima N, Haji M, Sakai Y et al..
Effect of dehydroepiandrosterone on glucose uptake in cultured human fibroblasts.
Metab Clin Exp.
1995;
44
543-548
20
Ketterer B, Tipping E, Hackney J F, Beale D.
A low-molecular-weight protein from rat liver that resembles ligandin in its binding properties.
Biochem J.
1976;
155
511-521
21
Adessi G L, Roblin S, Nicollier M.
Characterization, in the guinea pig, of a hepatic cytosol protein binding dehydroepiandrosterone sulfate and estrone sulfate.
C R Acad Sci Paris Serie III.
1988;
306
415-420
22
Nicollier M, Roblin S, Cypriani B, Remy-Martin J P, Adessi G L.
Purification and characterization of a binding protein related to the Z class of cytosolic proteins in guinea-pig liver cytosol (guinea-pig Z protein).
Eur J Biochem.
1992;
205
1137-1144
23
Yamada J, Sugiyama H, Sakuma M, Suga T.
Specific binding of dehydroepiandrosterone sulfate to rat liver cytosol: a possible association with peroxisomal enzyme induction.
Biochim Biophys Acta.
1994;
1224
139-146
24
Sugiyama H, Yamada J, Takama H et al..
Photoaffinity labeling of peroxisome proliferator binding proteins in rat hepatocytes; dehydroepiandrosterone sulfate- and bezafibrate-binding proteins.
Biochim Biophys Acta.
1997;
1339
321-330
25
Tsuji K, Furutama D, Tagami M, Ohsawa N.
Specific binding and effects of dehydroepiandrosterone sulfate (DHEA-S) on skeletal muscle cells: possible implication for DHEA-S replacement therapy in patients with myotonic dystrophy.
Life Sci.
1999;
65
17-26
26
Furutama D, Fukui R, Amakawa M, Ohsawa N.
Inhibition of migration and proliferation of vascular smooth muscle cells by dehydroepiandrosterone sulfate.
Biochim Biophys Acta.
1998;
1406
107-114
27
Ito A, Sakyo K, Sano H, Hirakawa S, Mori Y.
Cytoplasmic dehydroepiandrosterone sulfate-binding protein in rabbit uterine cervix.
Chem Pharm Bull (Tokyo).
1986;
34
2118-2125
28
Sakyo K, Ito A, Hirakawa S, Mori Y.
Specific binding of dehydroepiandrosterone sulfate to a cytoplasmic macromolecule in human fetal membrane.
Chem Pharm Bull (Tokyo).
1986;
34
2126-2132
29
Ohno T, Imai A, Tamaya T.
Possible evidence that dehydroepiandrosterone sulfate (DHA-S) stimulates cervical ripening by a membrane-mediated process: specific binding-sites in plasma membrane from human uterine cervix.
Res Commun Chem Pathol Pharmacol.
1991;
72
117-120
30
Imai A, Ohno T, Tamaya T.
Dehydroepiandrosterone sulfate-binding sites in plasma membrane from human uterine cervical fibroblasts.
Experientia.
1992;
48
999-1002
31
Eisen C, Meyer C, Wehling M.
Characterization of progesterone membrane binding sites from porcine liver probed with a novel azido-progesterone radioligand.
Cell Mol Biol.
1997;
43
165-173
32
Wehling M.
Specific, nongenomic actions of steroid hormones.
Annu Rev Physiol.
1997;
59
365-393
33
Watson C S, Gametchu B.
Membrane-initiated steroid actions and the proteins that mediate them.
Proc Soc Exp Biol Med (Maywood).
1999;
220
9-19
34
Gerdes D, Christ M, Haseroth K et al..
Nongenomic actions of steroids - from the laboratory to clinical implications.
J Pediatr Endocrinol Metab.
2000;
13
853-878
35
Schmidt B M, Gerdes D, Feuring M et al..
Rapid, nongenomic steroid actions: A new age?.
Front Neuroendocrinol.
2000;
21
57-94
36
Norman A W, Mizwicki M T, Norman D P.
Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model.
Nat Rev Drug Discov.
2004;
3
27-41
37
Losel R M, Falkenstein E, Feuring M et al..
Nongenomic steroid action: controversies, questions, and answers.
Physiol Rev.
2003;
83
965-1016
38
Razandi M, Pedram A, Greene G, Levin E.
Cell membrane and nuclear estrogen receptors originate from a single transcript: studies of ERa and ERb expressed in Chinese hamster ovary cells.
Mol Endocrinol.
1999;
13
307-319
39
Caulin-Glaser T, Garcia-Cardena G, Sarrel P, Sessa W C, Bender J R.
17 beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization.
Circ Res.
1997;
81
885-892
40
Nadal A, Ropero A B, Laribi O et al..
Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor alpha and estrogen receptor beta.
Proc Natl Acad Sci USA.
2000;
97
11603-11608
41
Benten W P, Stephan C, Lieberherr M, Wunderlich F.
Estradiol signaling via sequestrable surface receptors.
Endocrinology.
2001;
142
1669-1677
42
Zhu Y, Rice C, Pang Y, Pace M, Thomas P.
Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes.
Proc Natl Acad Sci USA.
2003;
100
2231-2236
43
Zhu Y, Bond J, Thomas P.
Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor.
Proc Natl Acad Sci USA.
2003;
100
2237-2242
44
Nemere I, Farach-Carson M C, Rohe B et al..
Ribozyme knockdown functionally links a 1,25(OH)2D3 membrane binding protein (1,25D3-MARRS) and phosphate uptake in intestinal cells.
Proc Natl Acad Sci USA.
2004;
101
7392-7397
45
Liu D, Dillon J.
Dehydroepiandrosterone stimulates nitric oxide release in vascular endothelial cells: evidence for a cell surface receptor.
Steroids.
2004;
69
279-289
46
Simoncini T, Mannella P, Fornari L et al..
Dehydroepiandrosterone modulates endothelial nitric oxide synthesis via direct genomic and nongenomic mechanisms.
Endocrinology.
2003;
144
3449-3455
47
Wyckoff M H, Chambliss K L, Mineo C et al..
Plasma membrane estrogen receptors are coupled to endothelial nitric-oxide synthase through Galpha(i).
J Biol Chem.
2001;
276
27071-27076
48 Simoncini T, Mannella P, Varone G, Genazzani A. Genomic and non-genomic regulation of human endothelial cell nitric oxide production by dehydroepiandrosterone. Presented at the 84th Annual Meeting of the Endocrine Society San Francisco, CA; June 19-22, 2002 PI-446
49
Lardy H, Marwah A, Marwah P.
Transformations of DHEA and its metabolites by rat liver.
Lipids.
2002;
37
1187-1191
50
Lardy H, Kneer N, Bellei M, Bobyleva V.
Induction of thermogenic enzymes by DHEA and its metabolites.
Ann NY Acad Sci.
1995;
774
171-179
51
Loria R.
Immune up-regulation and tumor apoptosis by androstene steroids.
Steroids.
2002;
67
953-966
52
Aspinall S R, Stamp S, Davison A, Shenton B K, Lennard T W.
The proliferative effects of 5-androstene-3 beta, 17 beta-diol and 5 alpha-dihydrotestosterone on cell cycle analysis and cell proliferation in MCF7, T47D and MDAMB231 breast cancer cell lines.
J Steroid Biochem Mol Biol.
2004;
88
37-51
53
Martin C, Ross M, Chapman K E et al..
CYP7B generates a selective estrogen receptor beta agonist in human prostate.
J Clin Endocrinol Metab.
2004;
89
2928-2935
54
Vasudevan N, Kow L M, Pfaff D W.
Early membrane estrogenic effects required for full expression of slower genomic actions in a nerve cell line.
Proc Natl Acad Sci USA.
2001;
98
12267-12271
55
Sakyo K, Ito A, Mori Y.
Effects of dehydroepiandrosterone sulphate on the production of collagenase and gelatinolytic metalloproteinase by rabbit uterine cervical cells in primary cultures.
J Pharmacobiodyn.
1986;
9
276-286
56
Bruder J M, Sobek L, Oettel M.
Dehydroepiandrosterone stimulates the estrogen response element.
J Steroid Biochem Mol Biol.
1997;
62
461-466
57
Kuiper G G, Carlsson B, Grandien K et al..
Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta.
Endocrinology.
1997;
138
863-870
58
Nephew K P, Sheeler C Q, Dudley M D et al..
Studies of dehydroepiandrosterone (DHEA) with the human estrogen receptor in yeast.
Mol Cell Endocrinol.
1998;
143
133-142
59
Rich R L, Hoth L R, Geoghegan K F et al..
Kinetic analysis of estrogen receptor/ligand interactions.
Proc Natl Acad Sci USA.
2002;
99
8562-8567
60
Lemmen J G, van den Brink C E, Legler J, van der Saag P T, van der Burg B.
Detection of oestrogenic activity of steroids present during mammalian gestation using oestrogen receptor alpha- and oestrogen receptor beta-specific in vitro assays.
J Endocrinol.
2002;
174
435-446
61
Culig Z, Hobisch A, Cronauer M V et al..
Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone.
Mol Endocrinol.
1993;
7
1541-1550
62
Holterhus P M, Piefke S, Hiort O.
Anabolic steroids, testosterone-precursors and virilizing androgens induce distinct activation profiles of androgen responsive promoter constructs.
J Steroid Biochem Mol Biol.
2002;
82
269-275
63
Lu S F, Mo Q, Hu S, Garippa C, Simon N G.
Dehydroepiandrosterone upregulates neural androgen receptor level and transcriptional activity.
J Neurobiol.
2003;
57
163-171
64
Yamada J, Sakuma M, Ikeda T, Fukuda K, Suga T.
Characteristics of dehydroepiandrosterone as a peroxisome proliferator.
Biochim Biophys Acta.
1991;
1092
233-243
65
Yamada J, Sakuma M, Suga T.
Induction of peroxisomal beta-oxidation enzymes by dehydroepiandrosterone and its sulfate in primary cultures of rat hepatocytes.
Biochim Biophys Acta.
1992;
1137
231-236
66
Schoonjans K, Staels B, Auwerx J.
The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation.
Biochim Biophys Acta.
1996;
1302
93-109
67
Peters J M, Zhou Y C, Ram P A et al..
Peroxisome proliferator-activated receptor alpha required for gene induction by dehydroepiandrosterone-3 beta-sulfate.
Mol Pharmacol.
1996;
50
67-74
68
Gottlicher M, Widmark E, Li Q, Gustafsson J A.
Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.
Proc Natl Acad Sci USA.
1992;
89
4653-4657
69
Sakuma M, Yamada J, Suga T.
Induction of peroxisomal b-oxidation by structural analogues of dehydroepiandrosterone in cultured rat hepatocytes: structure activity relationships.
Biochim Biophys Acta.
1993;
1169
66-72
70
Ripp S L, Falkner K C, Pendleton M L, Tamasi V, Prough R A.
Regulation of CYP2C11 by dehydroepiandrosterone and peroxisome proliferators: identification of the negative regulatory region of the gene.
Mol Pharmacol.
2003;
64
113-122
71
Jones S A, Moore L B, Shenk J L et al..
The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution.
Mol Endocrinol.
2000;
14
27-39
72
Ripp S L, Fitzpatrick J L, Peters J M, Prough R A.
Induction of CYP3A expression by dehydroepiandrosterone: involvement of the pregnane X receptor.
Drug Metab Dispos.
2002;
30
570-575
73
Blumberg B, Sabbagh Jr W, Juguilon H et al..
SXR, a novel steroid and xenobiotic-sensing nuclear receptor.
Genes Dev.
1998;
12
3195-3205
74
Forman B M, Tzameli I, Choi H S et al..
Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta.
Nature.
1998;
395
612-615
75
Fujita A, Furutama D, Tanaka T et al..
In vivo activation of the constitutive androstane receptor beta (CARbeta) by treatment with dehydroepiandrosterone (DHEA) or DHEA sulfate (DHEA-S).
FEBS Lett.
2002;
532
373-378
76
Maurice T, Phan V L, Urani A et al..
Neuroactive neurosteroids as endogenous effectors for the sigma1 (sigma1) receptor: pharmacological evidence and therapeutic opportunities.
Jpn J Pharmacol.
1999;
81
125-155
77
Rupprecht R.
Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties.
Psychoneuroendocrinology.
2003;
28
139-168
78
Laurine E, Lafitte D, Gregoire C et al..
Specific binding of dehydroepiandrosterone to the N terminus of the microtubule-associated protein MAP2.
J Biol Chem.
2003;
278
29979-29986
79
Lim R, Halpain S.
Regulated association of microtubule-associated protein 2 (MAP2) with Src and Grb2: evidence for MAP2 as a scaffolding protein.
J Biol Chem.
2000;
275
20578-20587
80
Ishizuka T, Kajita K, Miura A et al..
DHEA improves glucose uptake via activations of protein kinase C and phosphatidylinositol 3-kinase.
Am J Physiol.
1999;
276
E196-E204
Joseph DillonM.B.
VA Medical Center #3E10, Iowa City
IA 52246
Email: joseph-dillon@uiowa.edu