Semin Reprod Med 2004; 22(4): 289-298
DOI: 10.1055/s-2004-861546
Published in 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Is There a Receptor for Dehydroepiandrosterone or Dehydroepiandrosterone Sulfate?

Richard L. Widstrom1 , Joseph S. Dillon1
  • 1Division of Endocrinology, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa
Further Information

Publication History

Publication Date:
05 January 2005 (online)

ABSTRACT

It remains unknown whether dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) have a physiological role other than serving as metabolic intermediates in androgen synthesis. Apart from intracellular metabolism, there is no convincing cellular mechanism of action for physiological concentrations of DHEA(S). Unlike other major steroids, a receptor for DHEA(S) has not been definitively isolated. This article will review the evidence supporting a receptor-dependent basis for the direct physiological effects of DHEA(S). The data supporting an intracellular receptor for DHEA(S) are relatively weak and do not allow us to determine whether DHEA(S) directly, or a metabolite of DHEA(S), acts as a direct receptor ligand. Recent data strongly support a plasma membrane receptor for DHEA, but this potential receptor is yet to be isolated. Definitive characterization of the molecular mechanism (receptor or otherwise) of DHEA(S) action is necessary before we can determine whether DHEA(S) has a biological role other than as an androgen precursor.

REFERENCES

  • 1 Longcope C. Dehydroepiandrosterone metabolism.  J Endocrinol. 1996;  150 S125-S127
  • 2 Tchernof A, Labrie F. Dehydroepiandrosterone, obesity and cardiovascular disease risk: a review of human studies.  Eur J Endocrinol. 2004;  151 1-14
  • 3 Labrie F, Belanger A, Van L T et al.. DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging.  Steroids. 1998;  63 322-328
  • 4 Morissette M, Dicko A, Pezolet M, Callier S, Di Paolo T. Effect of dehydroepiandrosterone and its sulfate and fatty acid ester derivatives on rat brain membranes.  Steroids. 1999;  64 796-803
  • 5 Peng W, Hoidal J R, Farrukh I S. Role of a novel KCa opener in regulating K+ channels of hypoxic human pulmonary vascular cells.  Am J Respir Cell Mol Biol. 1999;  20 737-745
  • 6 Gordon G, Mackow M C, Levy H R. On the mechanism of interaction of steroids with human glucose 6-phosphate dehydrogenase.  Arch Biochem Biophys. 1995;  318 25-29
  • 7 Meikle A W, Dorchuck R W, Araneo B A et al.. The presence of a dehydroepiandrosterone-specific receptor binding complex in murine T cells.  J Steroid Biochem Mol Biol. 1992;  42 293-304
  • 8 Liu D, Dillon J S. Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by a specific plasma membrane receptor coupled to Galpha(i2,3).  J Biol Chem. 002;  277 21379-21388
  • 9 Ram P A, Waxman D J. Dehydroepiandrosterone 3 beta-sulphate is an endogenous activator of the peroxisome-proliferation pathway: induction of cytochrome P-450 4A and acyl-CoA oxidase mRNAs in primary rat hepatocyte culture and inhibitory effects of Ca(2+)-channel blockers.  Biochem J. 1994;  301 753-758
  • 10 Zhang L, Li B S, Ma W et al.. Dehydroepiandrosterone (DHEA) and its sulfated derivative (DHEAS) regulate apoptosis during neurogenesis by triggering the Akt signaling pathway in opposing ways.  Brain Res Mol Brain Res. 2002;  98 58-66
  • 11 Reuter S, Mayer D. Transport of dehydrosterone and dehydroepiandrosterone sulphate into rat hepatocytes.  J Steroid Biochem Mol Biol. 1995;  54 227-235
  • 12 Tsai M J, O'Malley B W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members.  Annu Rev Biochem. 1994;  63 451-486
  • 13 Okabe T, Haji M, Takayanagi R et al.. Up-regulation of high-affinity dehydroepiandrosterone binding activity by dehydroepiandrosterone in activated human T lymphocytes.  J Clin Endocrinol Metab. 1995;  80 2993-2996
  • 14 McLachlan J A, Serkin C D, Bakouche O. Dehydroepiandrosterone modulation of lipopolysaccharide-stimulated monocyte cytotoxicity.  J Immunol. 1996;  156 3328-335
  • 15 Williams M R, Ling S, Dawood T et al.. Dehydroepiandrosterone inhibits human vascular smooth muscle cell proliferation independent of ARs and ERs.  J Clin Endocrinol Metab. 2002;  87 176-181
  • 16 Kawai S, Yahata N, Nishida S, Nagai K, Mizushima Y. Dehydroepiandrosterone inhibits B16 mouse melanoma cell growth by induction of differentiation.  Anticancer Res. 1995;  15 427-431
  • 17 Kalimi M, Regelson W. Physicochemical characterization of [3H] DHEA binding in rat liver.  Biochem Biophys Res Commun. 1988;  156 22-29
  • 18 Mohan P F, Cleary M P. Studies on nuclear binding of dehydroepiandrosterone in hepatocytes.  Steroids. 992;  57 244-247
  • 19 Nakashima N, Haji M, Sakai Y et al.. Effect of dehydroepiandrosterone on glucose uptake in cultured human fibroblasts.  Metab Clin Exp. 1995;  44 543-548
  • 20 Ketterer B, Tipping E, Hackney J F, Beale D. A low-molecular-weight protein from rat liver that resembles ligandin in its binding properties.  Biochem J. 1976;  155 511-521
  • 21 Adessi G L, Roblin S, Nicollier M. Characterization, in the guinea pig, of a hepatic cytosol protein binding dehydroepiandrosterone sulfate and estrone sulfate.  C R Acad Sci Paris Serie III. 1988;  306 415-420
  • 22 Nicollier M, Roblin S, Cypriani B, Remy-Martin J P, Adessi G L. Purification and characterization of a binding protein related to the Z class of cytosolic proteins in guinea-pig liver cytosol (guinea-pig Z protein).  Eur J Biochem. 1992;  205 1137-1144
  • 23 Yamada J, Sugiyama H, Sakuma M, Suga T. Specific binding of dehydroepiandrosterone sulfate to rat liver cytosol: a possible association with peroxisomal enzyme induction.  Biochim Biophys Acta. 1994;  1224 139-146
  • 24 Sugiyama H, Yamada J, Takama H et al.. Photoaffinity labeling of peroxisome proliferator binding proteins in rat hepatocytes; dehydroepiandrosterone sulfate- and bezafibrate-binding proteins.  Biochim Biophys Acta. 1997;  1339 321-330
  • 25 Tsuji K, Furutama D, Tagami M, Ohsawa N. Specific binding and effects of dehydroepiandrosterone sulfate (DHEA-S) on skeletal muscle cells: possible implication for DHEA-S replacement therapy in patients with myotonic dystrophy.  Life Sci. 1999;  65 17-26
  • 26 Furutama D, Fukui R, Amakawa M, Ohsawa N. Inhibition of migration and proliferation of vascular smooth muscle cells by dehydroepiandrosterone sulfate.  Biochim Biophys Acta. 1998;  1406 107-114
  • 27 Ito A, Sakyo K, Sano H, Hirakawa S, Mori Y. Cytoplasmic dehydroepiandrosterone sulfate-binding protein in rabbit uterine cervix.  Chem Pharm Bull (Tokyo). 1986;  34 2118-2125
  • 28 Sakyo K, Ito A, Hirakawa S, Mori Y. Specific binding of dehydroepiandrosterone sulfate to a cytoplasmic macromolecule in human fetal membrane.  Chem Pharm Bull (Tokyo). 1986;  34 2126-2132
  • 29 Ohno T, Imai A, Tamaya T. Possible evidence that dehydroepiandrosterone sulfate (DHA-S) stimulates cervical ripening by a membrane-mediated process: specific binding-sites in plasma membrane from human uterine cervix.  Res Commun Chem Pathol Pharmacol. 1991;  72 117-120
  • 30 Imai A, Ohno T, Tamaya T. Dehydroepiandrosterone sulfate-binding sites in plasma membrane from human uterine cervical fibroblasts.  Experientia. 1992;  48 999-1002
  • 31 Eisen C, Meyer C, Wehling M. Characterization of progesterone membrane binding sites from porcine liver probed with a novel azido-progesterone radioligand.  Cell Mol Biol. 1997;  43 165-173
  • 32 Wehling M. Specific, nongenomic actions of steroid hormones.  Annu Rev Physiol. 1997;  59 365-393
  • 33 Watson C S, Gametchu B. Membrane-initiated steroid actions and the proteins that mediate them.  Proc Soc Exp Biol Med (Maywood). 1999;  220 9-19
  • 34 Gerdes D, Christ M, Haseroth K et al.. Nongenomic actions of steroids - from the laboratory to clinical implications.  J Pediatr Endocrinol Metab. 2000;  13 853-878
  • 35 Schmidt B M, Gerdes D, Feuring M et al.. Rapid, nongenomic steroid actions: A new age?.  Front Neuroendocrinol. 2000;  21 57-94
  • 36 Norman A W, Mizwicki M T, Norman D P. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model.  Nat Rev Drug Discov. 2004;  3 27-41
  • 37 Losel R M, Falkenstein E, Feuring M et al.. Nongenomic steroid action: controversies, questions, and answers.  Physiol Rev. 2003;  83 965-1016
  • 38 Razandi M, Pedram A, Greene G, Levin E. Cell membrane and nuclear estrogen receptors originate from a single transcript: studies of ERa and ERb expressed in Chinese hamster ovary cells.  Mol Endocrinol. 1999;  13 307-319
  • 39 Caulin-Glaser T, Garcia-Cardena G, Sarrel P, Sessa W C, Bender J R. 17 beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization.  Circ Res. 1997;  81 885-892
  • 40 Nadal A, Ropero A B, Laribi O et al.. Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor alpha and estrogen receptor beta.  Proc Natl Acad Sci USA. 2000;  97 11603-11608
  • 41 Benten W P, Stephan C, Lieberherr M, Wunderlich F. Estradiol signaling via sequestrable surface receptors.  Endocrinology. 2001;  142 1669-1677
  • 42 Zhu Y, Rice C, Pang Y, Pace M, Thomas P. Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes.  Proc Natl Acad Sci USA. 2003;  100 2231-2236
  • 43 Zhu Y, Bond J, Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor.  Proc Natl Acad Sci USA. 2003;  100 2237-2242
  • 44 Nemere I, Farach-Carson M C, Rohe B et al.. Ribozyme knockdown functionally links a 1,25(OH)2D3 membrane binding protein (1,25D3-MARRS) and phosphate uptake in intestinal cells.  Proc Natl Acad Sci USA. 2004;  101 7392-7397
  • 45 Liu D, Dillon J. Dehydroepiandrosterone stimulates nitric oxide release in vascular endothelial cells: evidence for a cell surface receptor.  Steroids. 2004;  69 279-289
  • 46 Simoncini T, Mannella P, Fornari L et al.. Dehydroepiandrosterone modulates endothelial nitric oxide synthesis via direct genomic and nongenomic mechanisms.  Endocrinology. 2003;  144 3449-3455
  • 47 Wyckoff M H, Chambliss K L, Mineo C et al.. Plasma membrane estrogen receptors are coupled to endothelial nitric-oxide synthase through Galpha(i).  J Biol Chem. 2001;  276 27071-27076
  • 48 Simoncini T, Mannella P, Varone G, Genazzani A. Genomic and non-genomic regulation of human endothelial cell nitric oxide production by dehydroepiandrosterone. Presented at the 84th Annual Meeting of the Endocrine Society San Francisco, CA; June 19-22, 2002 PI-446
  • 49 Lardy H, Marwah A, Marwah P. Transformations of DHEA and its metabolites by rat liver.  Lipids. 2002;  37 1187-1191
  • 50 Lardy H, Kneer N, Bellei M, Bobyleva V. Induction of thermogenic enzymes by DHEA and its metabolites.  Ann NY Acad Sci. 1995;  774 171-179
  • 51 Loria R. Immune up-regulation and tumor apoptosis by androstene steroids.  Steroids. 2002;  67 953-966
  • 52 Aspinall S R, Stamp S, Davison A, Shenton B K, Lennard T W. The proliferative effects of 5-androstene-3 beta, 17 beta-diol and 5 alpha-dihydrotestosterone on cell cycle analysis and cell proliferation in MCF7, T47D and MDAMB231 breast cancer cell lines.  J Steroid Biochem Mol Biol. 2004;  88 37-51
  • 53 Martin C, Ross M, Chapman K E et al.. CYP7B generates a selective estrogen receptor beta agonist in human prostate.  J Clin Endocrinol Metab. 2004;  89 2928-2935
  • 54 Vasudevan N, Kow L M, Pfaff D W. Early membrane estrogenic effects required for full expression of slower genomic actions in a nerve cell line.  Proc Natl Acad Sci USA. 2001;  98 12267-12271
  • 55 Sakyo K, Ito A, Mori Y. Effects of dehydroepiandrosterone sulphate on the production of collagenase and gelatinolytic metalloproteinase by rabbit uterine cervical cells in primary cultures.  J Pharmacobiodyn. 1986;  9 276-286
  • 56 Bruder J M, Sobek L, Oettel M. Dehydroepiandrosterone stimulates the estrogen response element.  J Steroid Biochem Mol Biol. 1997;  62 461-466
  • 57 Kuiper G G, Carlsson B, Grandien K et al.. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta.  Endocrinology. 1997;  138 863-870
  • 58 Nephew K P, Sheeler C Q, Dudley M D et al.. Studies of dehydroepiandrosterone (DHEA) with the human estrogen receptor in yeast.  Mol Cell Endocrinol. 1998;  143 133-142
  • 59 Rich R L, Hoth L R, Geoghegan K F et al.. Kinetic analysis of estrogen receptor/ligand interactions.  Proc Natl Acad Sci USA. 2002;  99 8562-8567
  • 60 Lemmen J G, van den Brink C E, Legler J, van der Saag P T, van der Burg B. Detection of oestrogenic activity of steroids present during mammalian gestation using oestrogen receptor alpha- and oestrogen receptor beta-specific in vitro assays.  J Endocrinol. 2002;  174 435-446
  • 61 Culig Z, Hobisch A, Cronauer M V et al.. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone.  Mol Endocrinol. 1993;  7 1541-1550
  • 62 Holterhus P M, Piefke S, Hiort O. Anabolic steroids, testosterone-precursors and virilizing androgens induce distinct activation profiles of androgen responsive promoter constructs.  J Steroid Biochem Mol Biol. 2002;  82 269-275
  • 63 Lu S F, Mo Q, Hu S, Garippa C, Simon N G. Dehydroepiandrosterone upregulates neural androgen receptor level and transcriptional activity.  J Neurobiol. 2003;  57 163-171
  • 64 Yamada J, Sakuma M, Ikeda T, Fukuda K, Suga T. Characteristics of dehydroepiandrosterone as a peroxisome proliferator.  Biochim Biophys Acta. 1991;  1092 233-243
  • 65 Yamada J, Sakuma M, Suga T. Induction of peroxisomal beta-oxidation enzymes by dehydroepiandrosterone and its sulfate in primary cultures of rat hepatocytes.  Biochim Biophys Acta. 1992;  1137 231-236
  • 66 Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation.  Biochim Biophys Acta. 1996;  1302 93-109
  • 67 Peters J M, Zhou Y C, Ram P A et al.. Peroxisome proliferator-activated receptor alpha required for gene induction by dehydroepiandrosterone-3 beta-sulfate.  Mol Pharmacol. 1996;  50 67-74
  • 68 Gottlicher M, Widmark E, Li Q, Gustafsson J A. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.  Proc Natl Acad Sci USA. 1992;  89 4653-4657
  • 69 Sakuma M, Yamada J, Suga T. Induction of peroxisomal b-oxidation by structural analogues of dehydroepiandrosterone in cultured rat hepatocytes: structure activity relationships.  Biochim Biophys Acta. 1993;  1169 66-72
  • 70 Ripp S L, Falkner K C, Pendleton M L, Tamasi V, Prough R A. Regulation of CYP2C11 by dehydroepiandrosterone and peroxisome proliferators: identification of the negative regulatory region of the gene.  Mol Pharmacol. 2003;  64 113-122
  • 71 Jones S A, Moore L B, Shenk J L et al.. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution.  Mol Endocrinol. 2000;  14 27-39
  • 72 Ripp S L, Fitzpatrick J L, Peters J M, Prough R A. Induction of CYP3A expression by dehydroepiandrosterone: involvement of the pregnane X receptor.  Drug Metab Dispos. 2002;  30 570-575
  • 73 Blumberg B, Sabbagh Jr W, Juguilon H et al.. SXR, a novel steroid and xenobiotic-sensing nuclear receptor.  Genes Dev. 1998;  12 3195-3205
  • 74 Forman B M, Tzameli I, Choi H S et al.. Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta.  Nature. 1998;  395 612-615
  • 75 Fujita A, Furutama D, Tanaka T et al.. In vivo activation of the constitutive androstane receptor beta (CARbeta) by treatment with dehydroepiandrosterone (DHEA) or DHEA sulfate (DHEA-S).  FEBS Lett. 2002;  532 373-378
  • 76 Maurice T, Phan V L, Urani A et al.. Neuroactive neurosteroids as endogenous effectors for the sigma1 (sigma1) receptor: pharmacological evidence and therapeutic opportunities.  Jpn J Pharmacol. 1999;  81 125-155
  • 77 Rupprecht R. Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties.  Psychoneuroendocrinology. 2003;  28 139-168
  • 78 Laurine E, Lafitte D, Gregoire C et al.. Specific binding of dehydroepiandrosterone to the N terminus of the microtubule-associated protein MAP2.  J Biol Chem. 2003;  278 29979-29986
  • 79 Lim R, Halpain S. Regulated association of microtubule-associated protein 2 (MAP2) with Src and Grb2: evidence for MAP2 as a scaffolding protein.  J Biol Chem. 2000;  275 20578-20587
  • 80 Ishizuka T, Kajita K, Miura A et al.. DHEA improves glucose uptake via activations of protein kinase C and phosphatidylinositol 3-kinase.  Am J Physiol. 1999;  276 E196-E204

Joseph DillonM.B. 

VA Medical Center #3E10, Iowa City

IA 52246

Email: joseph-dillon@uiowa.edu