Zusammenfassung
Ziel: Ziel dieser Studie war es, die Wirkung einer temporären Distraktion auf ein degeneriertes
Bandscheibensegment der Wirbelsäule in Hinblick auf Regenerationsphänomene zu untersuchen.
Methode: 32 Kaninchen wurden randomisiert einer von fünf Gruppen zugeordnet. Bei 6 Tieren
wurde das Bandscheibensegment L4/5 einer monosegmentalen axialen Kompression mit definierter
Last unterzogen (G2). In Gruppe G1 wurde nach 28-tägiger monosegmentaler Kompression
eine monosegmentale Distraktion für 28 Tage durchgeführt. Sechs Tiere erhielten eine
alleinige 28-tägige Distraktion (G5) und 6 Tiere wurden 28 Tage komprimiert und 28
weitere Tage nicht behandelt (G3). Als Kontrollen dienten sham-behandelte Tiere mit
angelegtem Apparat ohne axiale Belastung (G4). Nach 28 bzw. 56 Tagen wurden die Lendenwirbelsäulen
entnommen, geröntgt und histologische Schnitte der behandelten Bandscheiben angefertigt.
Die Bandscheibenhöhen wurden anhand der Röntgenbilder vermessen und die histologische
Auswertung erfolgte gemäß eines Degenerationsscores. Weiterhin wurden die histologischen
Schnitte auf Apoptose untersucht. Ergebnisse: Nach alleiniger Belastung (G2) zeigte sich eine signifikante radiologische Höhenminderung
des behandelten Bandscheibensegmentes. Histologisch trat ein Verlust der Organisation
des Anulus fibrosus auf. Die Anzahl apoptotischer Zellen im Anulus und in den angrenzenden
Endplatten war signifikant erhöht. Diese Veränderungen waren reversibel nach nachfolgender
Distraktion der Bandscheibe (G1). Neben einer physiologischen Bandscheibenhöhe zeigte
die Histologie Regenerationsphänomene in der distrahierten Bandscheibe. Die Apoptoserate
war verglichen zur Kompressionsgruppe signifikant verringert. Schlussfolgerung: Die Ergebnisse dieser Studie zeigen, dass durch temporäre axiale Distraktion ein
Regenerationspotenzial der mittelgradig degenerierten Kaninchenbandscheibe hervorgerufen
werden kann. Nach Distraktion der vorgeschädigen Bandscheibe konnten auf histologischer
und zellulärer Ebene Anzeichen einer Geweberegeneration nachgewiesen werden.
Abstract
Aim: The aim of this study was to investigate the effects of temporary distraction on
a degenerated intervertebral disc to characterize regenerative changes associated
with disc distraction. Method: New Zealand white rabbits (n = 32) were used for this experimental animal study.
The rabbits were randomly assigned to one of five groups. 6 animals were loaded for
28 days using a custom-made external loading device to stimulate disc degeneration
(G2). In 6 animals the discs were first loaded for 28 days and after 28 days loading
time the discs in six animals were treated as dynamic distraction with an external
distraction device (G1). In six animals the discs were distracted for 28 days without
previous loading (G5) and in six animals the discs were loaded for 28 days and afterwards
the loading device was removed for 28 days for recovery without distraction (G3).
Six animals were sham operated (G4) without application of axial load. After 28 to
56 days loading and distraction time, the animals were sacrificed and the lumbar spine
was harvested for histological and radiographic analysis. Histology was performed
according to a degeneration score and disc height was calculated radiographically.
For the cell viability examination, the number of apoptotic cells was determined.
Results: After 28 days of loading (G2), the discs showed a significant decrease in disc space
of the treated segment. Histologically, a disorganization of the architecture of the
annulus occurred. The number of dead cells increased significantly in the annulus
and cartilage endplate. These changes were reversible after 28 days of distraction
(G1). The disc thickness increased significantly to physiological levels as compared
to the specimens from the 28 days loading group without distraction. Histologically,
the discs showed signs of tissue regeneration after 28 days of distraction (G1). The
number of apoptotic cells decreased significantly in comparison to the loaded discs
without distraction (G2). Conclusion: The results of this study suggest that disc regeneration can be induced by axial
dynamic distraction in the moderately degenerated rabbit intervertebral disc. The
decompressed rabbit intervertebral discs showed signs of tissue recovery at the cellular
and histological levels after temporary disc distraction.
Schlüsselwörter
Tiermodell - Bandscheibendegeneration - temporäre Distraktion - Bandscheibenregeneration
Key words
animal model - disc degeneration - disc distraction - disc regeneration
Literatur
1
Guiot B H, Fessler R.
Molecular biology of degenerative disc disease.
Neurosurgery.
2000;
47
1034-1040
2
Uematsu Y, Matuzaki H, Iwahashi M.
Effects of nicotine on the intervertebral disc: an experimental study in rabbits.
J Orthop Sci.
2001;
6
177-182
3
Iwahashi M, Matsuzaki H, Tokuhashi Y, Wakabayashi K, Uematsu Y.
Mechanism of intervertebral disc degeneration caused by nicotine in rabbits to explicate
intervertebral disc disorders caused by smoking.
Spine.
2002;
27
1396-1401
4
Kim K S, Yoon S T, Park J S, Li J, Park M S, Hutton W C.
Inhibition of proteoglycan and type II collagen synthesis of disc nucleus cells by
nicotine.
J Neurosurg.
2003;
99
291-297
5
Tan C I, Kent G N, Randall A G, Edmondston S J, Singer K P.
Age-related changes in collagen, pyridinoline, and deoxypyridinoline in normal human
thoracic intervertebral discs.
J Gerontol A Biol Sci Med Sci.
2003;
58
387-393
6
Solovieva S, Lohiniva J, Leino-Arjas P, Raininko R, Luoma K, Ala-Kokko L, Riihimaki H.
COL9A3 gene polymorphism and obesity in intervertebral disc degeneration of the lumbar
spine: evidence of gene-environment interaction.
Spine.
2002;
27
2691-2696
7
Ala-Kokko L.
Genetic risk factors for lumbar disc disease.
Ann Med.
2002;
34
42-47
8
Stoll T M, Dubois G, Schwarzenbach O.
The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion
system.
Euro Spine J.
2002;
11 (Suppl 2)
170-178
9
Cakir B, Ulmar B, Koepp H, Huch K, Puhl W, Richter M.
Posterior dynamic stabilization as an alternative for dorso-ventral fusion in spinal
stenosis with degenerative instability.
Z Orthop Ihre Grenzgeb.
2003;
141
418-424
10
Kroeber M W, Unglaub F, Wang H, Schmid C, Thomsen M, Nerlich A G, Richter W.
New in vivo animal model to create intervertebral disc degeneration and to investigate
effects of therapeutic strategies to stimulate disc regeneration.
Spine.
2002;
27
2684-2690
11
Unglaub F, Lorenz H, Nerlich A, Richter W, Kroeber M W.
Stimulation of degenerative changes in the intervertebral disc through axial load.
Radiologic, histologic and biomechanical research in an animal model.
Z Orthop Ihre Grenzgeb.
2003;
141
412-417
12
Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt K F, Nerlich A G.
Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award
in basic science.
Spine.
2002;
27
2631-2644
13
Chen C T, Burton-Wurster N, Borden C, Hueffer K, Bloom S E, Lust G.
Chondrocyte necrosis and apoptosis in impact damaged articular cartilage.
J Orthop Res.
2001;
19
703-711
14
Thompson J, Pearce R H, Schechter M T, Adams M E, Tsang I K, Bishop P B.
Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral
disc.
Spine.
1990;
15
411-415
15
Hartwig E, Hoellen I, Liener U, Kramer M, Wickstroem M, Kinzl L.
Occupational disease 2108. Degeneration pattern in magnetic resonance tomography of
the lumbar spine in patient with differential weight-bearing activity.
Unfallchirurg.
1997;
100
888-894
16
Cassidy J D, Yong-Hing K, Kirkaldy-Willis W H, Wilkinson A A.
A study of the effects of bipedism and upright posture on the lumbosacral spine and
paravertebral muscles of the Wistar rat.
Spine.
1988;
13
301-308
17
Gloobe H, Nathan H.
Osteophyte formation in bipedal rats.
J Comp Path.
1973;
83
133-141
18
Goff C W, Landmesser W.
Bipedal rats and mice; labaratory animals for orthopaedic research.
J Bone Joint Surg [Am].
1957;
39
616-622
19
Yamada K.
The dynamics of experimental posture. Experimental study of intervertebral disk herniation
in bipedal animals.
Clin Orthop.
1962;
25
20-31
20
Colliou O K, Chin J R, Liebenberg E C, Lotz J C.
Matrix disorganisation, apoptosis, and gene expression in the intervertebral disc
are modulated by compressive loading: A mouse model for disc degeneration.
Trans Orthop Res Soc.
1998;
23
189
21
Lipson S J, Muir H.
1980 Volvo Award in basic science. Proteoglycans in experimental intervertebral disc
degeneration.
Spine.
1981;
6
194-210
1 hierbei handelt es sich um gleichberechtigte Erstautoren
Dr. med. M. Kröber
Klinik für orthopädische Chirurgie · Kantonsspital St. Gallen
Rorschacher Str. 95
9007 St. Gallen
Schweiz
Phone: +41/7 14/94 13 74
Fax: +41/7 14/94 61 56
Email: markus.kroeber@kssg.ch