Zusammenfassung
Studienziel: Ziel der vorliegenden Arbeit war es, den Einfluss von Partikeln des hochmolekulargewichtigen Polyethylens (UHMW-PE), wie es standardmäßig in der Endoprothetik verwendet wird, auf Veränderungen der zellulären Differenzierung in einem neuartigen in vitro Modell (direkter Zell-Partikel-Kontakt) zu untersuchen. Methode: UHMW-PE Partikel mit einer durchschnittlichen Größe von Ø ≤ 7,5 µm wurden in unterschiedlichen Konzentrationen (105 , 106 und 107 Partikel pro Kulturschale) in einer Kollagen I-Suspension gelöst und in den Kulturschalen befestigt. Dadurch wurde ein direkter Kontakt der Zellen mit den UHMW-PE Abriebpartikeln gesichert. Im Anschluss wurden jeweils 3 × 106 humane Knochenmarkzellen pro Kulturschale auf die befestigten Partikel ausgesät und für 72 h kultiviert. Die Reaktion der Zellen auf die Partikel wurde lichtmikroskopisch, rasterelektronenmikroskopisch und anhand einer FACS-Analyse mit Kollagen befestigten Zellkulturen ohne Partikel verglichen. Ergebnisse: Die lichtmikroskopische Auswertung zeigte vor allem eine Einscheidung der Partikel, die sich zu großen Konglomeraten (Ø 7,5 µm) zusammen gelagert hatten und weniger phagozytierte Partikel, welches Rasterelektronenmikroskopisch bestätigt wurde. Die Ergebnisse der FACS-Analyse ergaben signifikante Unterschiede im Fall der CD3/CD4-positiven, CD14-positiven und CD19-positiven Zellen (p < 0,05). Eine signifikante Zunahme der CD3/CD4-positiven and CD14-positiven Zellen (p < 0,05) konnte nach 72 h Kulturdauer beobachtet werden, wohingegen eine signifikante Abnahme der CD19-positiven Zellen nachweisbar war. Schlussfolgerung: Die Ergebnisse der vorliegenden Studien belegen, dass die partikel-induzierte Abwehrreaktion durch UHMW-PE sich nicht nur auf den Partikel-Makrophagen-Kontakt beschränkt, sondern auch die Zelldifferenzierung im Knochenmark beeinflussen kann. Des Weiteren bekräftigen die Ergebnisse, dass die vorliegende Methode nützlich zur In-vitro-Analyse von UHMW-PE Abriebpartikeln mit direkten Partikel-Zell-Kontakt ist. Obwohl die Partikel hauptsächlich zu Konglomeraten zusammenlagert waren, konnte gezeigt werden, dass eine Änderung der immunkompetenten Zellen hervorgerufen wurde.
Abstract
Aim: The purpose of the present study was to evaluate the influence of ultra-high-molecular-weight polyethylene (UHMW-PE), which is the major constituent of the material debris formed as a result of orthopaedic implant wear, on the cellular differentiation in a modified in vitro model. Methods: UHMW-PE particles (Ø ≤ 7,5 µm) were suspended in soluble collagen type I and subsequently solidified in different concentrations (105 , 106 and 107 particles per well) on the bottom of the wells. Human bone marrow cells in a concentration of 3 × 106 cells per well were seeded on the collagen-particle substrate and maintained for up to 72 h. The response of the cells to the particles was examined by light microscopy, scanning electron microscopy and FACS analysis compared to cells on control collagen surfaces without any particles. Results: Light and scanning microscopic evaluation revealed that the UHMW-PE particles, which had built large conglomerates (Ø 7.5 µm), were mainly surrounded by the cells and less phagocytosed. The results of the FACS analysis revealed significant differences in CD3/CD4 positive, CD14 positive and CD19 positive cells (p < 0.05). A significant elevation of CD3/CD4 positive and CD14 positive cells (p < 0.05) was observed after the period of culture (72 h) whereas a significant decrease could be detected in the case of CD19 positive cells. Conclusion: The results demonstrate that the particle-induced response by UHMW-PE limits itself not only to the particle macrophage contact but influences also the differentiation of the bone marrow. Moreover, the results confirm that the present method is useful to evaluate the in vitro effects of UHMW-PE wear particles with direct particle cell contact. Although the particles built large conglomerates, it could be shown that a change of the immune-competent cells also occurred.
Schlüsselwörter
UHMW-PE - Abrieb - Zelldifferenzierung - direkter Zellkontakt
Key words
UHMW-PE - wear debris - cell differentiation - direct cell contact
Literatur
1
Bos I.
Tissue reactions around loosened hip joint endoprostheses. A histological study of secondary capsules and interface membranes.
Orthopäde.
2001;
30
881-889
2
Boynton E, Waddell J P, Morton J, Gardiner G W.
Aseptic loosening in total hip implants: the role of polyethylene wear debris.
Can J Surg.
1991;
34
599-605
3
Boynton E L, Henry M, Morton J, Waddell J P.
The inflammatory response to particulate wear debris in total hip arthroplasty.
Can J Surg.
1995;
38
507-515
4
Boynton E L, Waddell J, Meek E, Labow R S, Edwards V, Santerre J P.
The effect of polyethylene particle chemistry on human monocyte-macrophage function in vitro.
J Biomed Mater Res.
2000;
52
239-245
5
Charnley J, Cupic Z.
The nine and ten year results of the low-friction arthroplasty of the hip.
Clin Orthop.
1973;
95
9-25
6
Chiba J, Maloney W J, Inoue K, Rubash H E.
Biochemical analyses of human macrophages activated by polyethylene particles retrieved from interface membranes after failed total hip arthroplasty.
J Arthroplasty.
2001;
16 (Suppl 1)
101-105
7
Doorn P F, Mirra J M, Campbell P A, Amstutz H C.
Tissue reaction to metal on metal total hip prostheses.
Clin Orthop.
1996;
S 187-S 205
8
Endres S, Efe T, Schickl G, Wilke A ..
Analyse einer humanen Knochenmarkzellkultur. Teil I und II.
Osteologie.
2003;
3
175-197
9
Engh G A.
Failure of the polyethylene bearing surface of a total knee replacement within four years. A case report.
J Bone Joint Surg [Am].
1988;
70
1093-1096
10
Friedman R J, Black J, Galante J O, Jacobs J J, Skinner H B.
Current concepts in orthopaedic biomaterials and implant fixation. Review.
Instr Course Lect.
1994;
43
233-255
11
Goldring S R, Schiller A L, Roelke M, Rourke C M, O'Neil D A, Harris W H.
The synovial-like membrane at the bone-cement interface in loose total hip replacements and its proposed role in bone lysis.
J Bone Joint Surg [Am].
1983;
65
575-584
12
Goodman S, Aspenberg P, Song Y, Knoblich G, Huie P, Regula D, Lidgren L.
Tissue ingrowth and differentiation in the bone-harvest chamber in the presence of cobalt-chromium-alloy and high-density-polyethylene particles.surface area.
J Biomed Mater Res.
1994;
28
81-90
13
Goodman S B, Fornasier V L, Lee J, Kei J.
The histological effects of the implantation of different sizes of polyethylene particles in the rabbit tibia.
J Biomed Mater Res.
1990;
24
517-524
14
Green T R, Fisher J, Matthews J B, Stone M H, Ingham E.
Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles.
J Biomed Mater Res.
2000;
53
490-497
15
Green T R, Fisher J, Stone M, Wroblewski B M, Ingham E.
Polyethylene particles of a ‘critical size’ are necessary for the induction of cytokines by macrophages in vitro.
Biomaterials.
1998;
19
2297-2302
16
Gross T P, Lennox D W.
Osteolytic cyst-like area associated with polyethylene and metallic debris after total knee replacement with an uncemented vitallium prosthesis. A case report.
J Bone Joint Surg [Am].
1992;
74
1096-1101
17
Hirashima Y, Ishiguro N, Kondo S, Iwata H.
Osteoclast induction from bone marrow cells is due to pro-inflammatory mediators from macrophages exposed to polyethylene particles: a possible mechanism of osteolysis in failed THA.
J Biomed Mater Res.
2001;
56
177-183
18
Howie D W, Haynes D R, Rogers S D, McGee M A, Pearcy M J.
The response to particulate debris.
Orthop Clin North Am.
1993;
24
571-581
19
Kilgus D J, Funahashi T T, Campbell P A.
Massive femoral osteolysis and early disintegration of a polyethylene-bearing surface of a total knee replacement. A case report.
J Bone Joint Surg [Am].
1992;
74
770-774
20
Kim K J, Chiba J, Rubash H E.
In vivo and in vitro analysis of membranes from hip prostheses inserted without cement.
J Bone Joint Surg [Am].
1994;
76
172-180
21
Kim K J, Itoh T, Tanahashi M, Kumegawa M.
Activation of osteoclast-mediated bone resorption by the supernatant from a rabbit synovial cell line in response to polyethylene particles.
J Biomed Mater Res.
1996;
32
3-9
22
Matthews J B, Besong A A, Green T R, Stone M H, Wroblewski B M, Fisher J, Ingham E.
Evaluation of the response of primary human peripheral blood mononuclear phagocytes to challenge with in vitro generated clinically relevant UHMWPE particles of known size and dose.
J Biomed Mater Res.
2000;
52
296-307
23
Mirra J M, Amstutz H C, Matos M, Gold R.
The pathology of the joint tissues and its clinical relevance in prosthesis failure.
Clin Orthop Relat Res.
1976;
117
221-240
24
Murray D W, Rushton N.
Macrophages stimulate bone resorption when they phagocytose particles.
J Bone Joint Surg [Br].
1990;
72
988-992
25
Neale S D, Haynes D R, Howie D W, Murray D W, Athanasou N A.
The effect of particle phagocytosis and metallic wear particles on osteoclast formation and bone resorption in vitro.
J Arthroplasty.
2000;
15
654-662
26
O’Connor D T, Choi M G, Kwon S Y, Paul Sung K L.
New insight into the mechanism of hip prosthesis loosening: effect of titanium debris size on osteoblast function.
J Orthop Res.
2004;
22
229-236
27
Peters P C, Engh G A, Dwyer K A, Vinh T N.
Osteolysis after total knee arthroplasty without cement.
J Bone Joint Surg [Am].
1992;
74
864-876
28
Revell P A, al-Saffar N, Kobayashi A.
Biological reaction to debris in relation to joint prostheses.
Proc Inst Mech Eng [H].
1997;
211
187-197
29
Salvati E A, Wilson P D, Jolley M N, Vakili F, Aglietti P, Brown G C.
A ten-year follow-up study of our first one hundred consecutive Charnley total hip replacements.
J Bone Joint Surg [Am].
1981;
63
753-767
30
Schmalzried T P, Jasty M, Rosenberg A, Harris W H.
Polyethylene wear debris and tissue reactions in knee as compared to hip replacement prostheses.
J Appl Biomater.
1994;
5
185-190
31
Shanbhag A S, Jacobs J J, Black J, Galante J O, Glant T T.
Human monocyte response to particulate biomaterials generated in vivo and in vitro.
J Orthop Res.
1995;
13
792-801
32
Shanbhag A S, Jacobs J J, Black J, Galante J O, Glant T T.
Macrophage/particle interactions: effect of size, composition and surface area.
J Biomed Mater Res.
1994;
28
81-90
33
Howie D W, Haynes D R, Rogers S D, McGee M A, Pearcy M J.
The response to particulate debris.
Orthop Clin North Am.
1993;
24
571-581
34
Sullivan P M, MacKenzie J R, Callaghan J J, Johnston R C.
Total hip arthroplasty with cement in patients who are less than fifty years old. A sixteen to twenty-two-year follow-up study.
J Bone Joint Surg [Am].
1994;
76
863-869
35
Voronov I, Santerre J P, Hinek A, Callahan J W, Sandhu J, Boynton E L.
Macrophage phagocytosis of polyethylene particulate in vitro.
J Biomed Mater Res.
1998;
39
40-51
36
Wilke A, Orth J, Lomb M, Fuhrmann R, Kienapfel H, Griss P, Franke R P.
Biocompatibility analysis of different biomaterials in human bone marrow cell cultures.
J Biomed Mater Res.
1998;
40
301-306
37
Willert H G.
Reactions of the articular capsule to wear products of artificial joint prostheses.
J Biomed Mater Res.
1977;
11
157-164
38
Xing S, Waddell J E, Boynton E L.
Changes in macrophage morphology and prolonged cell viability following exposure to polyethylene particulate in vitro.
Microsc Res Tech.
2002;
57
523-529
Dr. med. S. Endres
Philipps-Universität Marburg
Baldingerstrasse
35033 Marburg
Deutschland
Telefon: 00 49/64 21/2 86 36 91
eMail: endres@med.uni-marburg.de