Plant Biol (Stuttg) 2005; 7(3): 300-306
DOI: 10.1055/s-2005-837691
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Isolation of Mutant Lines with Decreased Numbers of Chloroplasts per Cell from a Tagged Mutant Library of the Moss Physcomitrella patens

A. Hayashida1 , K. Takechi1 , M. Sugiyama1 , M. Kubo1 , R. D. Itoh2 , S. Takio3 , T. Fujita4 , 5 , Y. Hiwatashi4 , 5 , M. Hasebe4 , 5 , H. Takano1
  • 1Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
  • 2Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
  • 3Center for Marine Environment Studies, Kumamoto University, Kumamoto 860-8555, Japan
  • 4National Institute for Basic Biology, Okazaki 444-8585, Japan
  • 5Department of Molecular Biomechanics, School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
Further Information

Publication History

Received: December 12, 2004

Accepted: March 16, 2005

Publication Date:
12 May 2005 (online)

Abstract

Eleven mutant lines exhibiting decreased numbers of chloroplasts per cell were isolated from 8 800 tagged mutant lines of Physcomitrella patens by microscopic observations. Chloronema subapical cells in wild-type plants had a mean of 48 chloroplasts, whereas chloroplast numbers in subapical cells in mutant lines 215 and 222 decreased to 75 % of that in the wild type. Seven mutant lines - 473, 122, 221, 129, 492, 207, and 138 - had about half as many chloroplasts as the wild type. Mutant line 11 had a few remarkably enlarged chloroplasts, and mutant line 347 had chloroplasts of various sizes. Whereas the cell volume was the same as in the wild type in mutant lines 222, 473, 221, 129, 492, and 207, the cell volume of the other mutants increased. The chloroplast number of leaf cells was the same as that of chloronema cells in each mutant line when gametophores could be formed. Treatment with ampicillin decreased the number of chloroplasts in all mutant lines. Southern hybridization using DNA in tags as probes showed that only one insertion occurred in mutant lines 473 and 221. To determine whether the tagged DNA inserted into the known genes for plastid division, we isolated the PpMinD1, PpMinD2, and PpMinE1 genes. Genomic polymerase chain reaction analysis showed that the PpFtsZ and PpMinD/E genes were not disrupted by the insertion of the tags in mutant lines 11 and 347, respectively.

References

  • 1 Abel W. O., Kenbel W., Koop H.-U., Marienfeld J. R., Quader H., Reski R., Schnepf E., Sporlein B.. A cytokinin-sensitive mutant of moss, Physcomitrella patens, defective in chloroplast division.  Protoplasma. (1989);  152 1-13
  • 2 Colletti K. S., Tattersall E. A., Pyke K. A., Froelich J. E., Stokes K. D., Osteryoung K. W.. A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus.  Current Biology. (2000);  10 507-516
  • 3 Egener T., Granado J., Guitton M.-C., Hohe A., Holtorf H., Lucht J. M., Rensing S. A., Schlink K., Schulte J., Schween G., Zimmermann S., Duwenig E., Rak B., Reski R.. High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library.  BMC Plant Biology. (2002);  2 6
  • 4 Fujiwara M. T., Nakamura A., Itoh R., Shimada Y., Yoshida S., Møller S. G.. Chloroplast division site placement requires dimerization of the ARC11/AtMinD1 protein in Arabidopsis. .  Journal of Cell Science. (2004);  117 2399-2410
  • 5 Gao H., Kadirjan-Kalbach D., Froehlich J. E., Osteryoung K. W.. ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery.  Proceedings of the National Academy of Sciences of the USA. (2003);  100 4328-4333
  • 6 Hiwatashi Y., Nishiyama T., Fujita T., Hasebe M.. Establishment of gene-trap and enhancer-trap system in the moss Physcomitrella patens. .  Plant Journal. (2001);  28 105-116
  • 7 Itoh R., Fujiwara M., Nagata N., Yoshida S.. A chloroplast protein homologous to the eubacterial topological specificity factor MinE plays a role in chloroplast division.  Plant Physiology. (2001);  127 1644-1655
  • 8 Kasten B., Reski R.. β-lactam antibiotics inhibit chloroplast division in a moss (Physcomitrella patens) but not in a tomato (Lycopersicon esculentum). .  Journal of Plant Physiology. (1997);  150 137-140
  • 9 Katayama N., Takano H., Sugiyama M., Takio S., Sakai A., Tanaka K., Kuroiwa H., Ono K.. Effects of antibiotics that inhibit the bacterial peptidoglycan synthesis pathway on moss chloroplast division.  Plant Cell Physiology. (2003);  44 776-781
  • 10 Kiessling J., Kruse S., Rensing S. A., Harter K., Decker E. L., Reski R.. Visualization of a cytoskeleton-like FtsZ network in chloroplasts.  Journal of Cell Biology. (2000);  151 945-950
  • 11 Kiessling J., Martin A., Gremillon L., Rensing S. A., Nick P., Sarnighausen E., Decker E. L., Reski R.. Dual targeting of plastid division protein FtsZ to chloroplast and the cytoplasm.  EMBO Reports. (2004);  5 889-894
  • 12 Miyagishima S., Nishida K., Kuroiwa T.. An evolutionary puzzle: chloroplast and mitochondrial division rings.  Trends in Plant Science. (2003);  8 432-438
  • 13 Murray M. G., Thompson W. F.. Rapid isolation of high molecular weight plant DNA.  Nucleic Acids Research. (1980);  8 4321-4325
  • 14 Nishiyama T., Hiwatashi Y., Sakakibara K., Kato M., Hasebe M.. Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis.  DNA Research. (2000);  7 9-17
  • 15 Nishiyama T., Fujita T., Shin-I. T., Seki M., Nishide H., Uchiyama I., Kamiya A., Carninci P., Hayashizaki Y., Shinozaki K., Kohara Y., Hasebe M.. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution.  Proceedings of the National Academy of Sciences of the USA. (2003);  100 8007-8012
  • 16 Pyke K. A., Leech R. M.. A rapid image analysis screening procedure for identifying chloroplast-number mutants in mesophyll cells of Arabidopsis thaliana. .  Plant Physiology. (1991);  96 1193-1195
  • 17 Pyke K. A., Leech R. M.. Nuclear mutations radically alter chloroplast division and expansion in Arabidopsis thaliana. .  Plant Physiology. (1992);  99 1005-1008
  • 18 Pyke K. A.. Plastid division and development.  Plant Cell. (1999);  11 549-556
  • 19 Osteryoung K. W., Vierling E.. Conserved cell and organelle division.  Nature. (1995);  376 473-474
  • 21 Osteryoung K. W., Nunnari J.. The division of endosymbiotic organelles.  Science. (2003);  302 1698-1704
  • 22 Rensing S. A., Kiessling J., Reski R., Decker E. L.. Diversification of ftsZ during early land plant evolution.  Journal of Molecular Evolution. (2004);  58 154-162
  • 23 Reski R., Cove D. J.. Quick guide: Physcomitrella patens. .  Current Biology. (2004);  14 R261-R262
  • 24 Reutter K., Atzorn R., Hadeler B., Schmulling T., Reski R.. Expression of the bacterial ipt gene in Physcomitrella patens rescues mutation in budding and in plastid division.  Planta. (1998);  206 196-203
  • 25 Schaefer D. G., Zrӱd J.-P.. Efficient gene targeting in the moss Physcomitrella patens. .  Plant Journal. (1997);  11 1195-1206
  • 26 Shimada H., Koizumi M., Kuroki K., Mochizuki M., Fujimoto H., Ohta H., Masuda T., Takamiya K.. ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase.  Plant Cell Physiology. (2004);  45 960-967
  • 27 Schulte J., Reski R.. High throughput cryopreservation of 140 000 Physcomitrella patens mutants.  Plant Biology. (2004);  6 119-127
  • 29 Strepp R., Scholz S., Kuruse S., Speth V., Reski R.. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin.  Proceedings of the National Academy of Sciences of the USA. (1998);  95 4368-4373
  • 30 Vitha S., Froehlich J. E., Koksharova O., Pyke K. A., van Erp H., Osteryoung K. W.. ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2.  Plant Cell. (2003);  15 1918-1933

H. Takano

Graduate School of Science and Technology
Kumamoto University

Kumamoto 860-8555

Japan

Email: takano@kumamoto-u.ac.jp

Guest Editor: R. Reski

    >