Abstract
Gene targeting in the moss Physcomitrella patens has created a new platform for plant functional genomics. We produced a mutant collection of 73 329 Physcomitrella plants and evaluated the phenotype of each transformant in comparison to wild type Physcomitrella. Production parameters and morphological changes in 16 categories, such as plant structure, colour, coverage with gametophores, cell shape, etc., were listed and all data were compiled in a database (mossDB). Our mutant collection consists of at least 1804 auxotrophic mutants which showed growth defects on minimal Knop medium but were rescued on supplemented medium. 8129 haploid and 11 068 polyploid transformants had morphological alterations. 9 % of the haploid transformants had deviations in the leaf shape, 7 % developed less gametophores or had a different leaf cell shape. Other morphological deviations in plant structure, colour, and uniformity of leaves on a moss colony were less frequently observed. Preculture conditions of the plant material and the cDNA library (representing genes from either protonema, gametophore or sporophyte tissue) used to transform Physcomitrella had an effect on the number of transformants per transformation. We found correlations between ploidy level and plant morphology and growth rate on Knop medium. In haploid transformants correlations between the percentage of plants with specific phenotypes and the cDNA library used for transformation were detected. The number of different cDNAs present during transformation had no effect on the number of transformants per transformation, but it had an effect on the overall percentage of plants with phenotypic deviations. We conclude that by linking incoming molecular, proteome, and metabolome data of the transformants in the future, the database mossDB will be a valuable biological resource for systems biology.
Key words
Bryophyte - database analysis - moss - mossDB - mutant collection -
Physcomitrella patens.
References
1
Aggarwal K., Lee K. H..
Functional genomics and proteomics as a foundation for systems biology.
Briefings in Functional Genomics and Proteomics.
(2003);
2
175-184
2
Ashton N. W., Champagne C. E. M., Weiler T., Verkoczy L. K..
The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements.
New Phytologist.
(2000);
146
391-402
3
Ashton N. W., Cove D. J..
The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens.
.
Molecular and General Genetics.
(1977);
154
87-95
4
Cove D. J., Ashton N. W..
Auxotrophic mutants of the moss, Physcomitrella patens.
.
Heredity.
(1974);
33
135
5
Decker E. L., Reski R..
The moss bioreactor.
Current Opinion in Plant Biology.
(2004);
7
166-170
6
Deroles S., Smith M. A. L., Lee C..
Factors affecting transformation of cell cultures from three dicotyledonous pigment-producing species using microprojectile bombardment.
Plant Cell Tissue and Organ Culture.
(2002);
70
69-76
7
Egener T., Granado J., Guitton M.-C., Hohe A., Holtorf H., Lucht J. M., Rensing S., Schlink K., Schulte J., Schween G., Zimmermann S., Duwenig E., Rak B., Reski R..
High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library.
BMC Plant Biology.
(2002);
2
6
8
Engel P. P..
The induction of biochemical and morphological mutants in the moss Physcomitrella patens.
.
American Journal of Botany.
(1968);
55
438-446
9
Girke T., Schmidt H., Zähringer U., Reski R., Heinz E..
Identification of a novel delta-6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens.
.
Plant Journal.
(1998);
15
39-48
10
Grimsley N. H., Ashton N. W., Cove D. J..
Complementation analysis of auxotrophic mutants of the moss, Physcomitrella patens, using protoplast fusion.
Molecular and General Genetics.
(1977);
155
103-107
11
Hiwatashi Y., Nishiyama T., Fujita T., Hasebe M..
Establishment of gene-trap and enhancer-trap systems in the moss Physcomitrella patens.
.
Plant Journal.
(2001);
28
105-116
12
Hohe A., Decker E. L., Gorr G., Schween G., Reski R..
Tight control of growth and cell differentiation in photoautotrophically growing moss Physcomitrella patens bioreactor cultures.
Plant Cell Reports.
(2002);
20
1135-1140
13
Hohe A., Egener T., Lucht J. M., Holtorf H., Reinhard C., Schween G., Reski R..
An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene knockouts in a moss, Physcomitrella patens.
.
Current Genetics.
(2004);
44
339-347
14
Hohe A., Reski R..
Optimisation of a bioreactor culture of the moss Physcomitrella patens for mass production of protoplasts.
Plant Science.
(2002);
163
69-74
15
Hohe A., Reski R..
A tool for understanding homologous recombination in plants.
Plant Cell Reports.
(2003);
21
1135-1142
16
Holtorf H., Guitton M.-C., Reski R..
Plant functional genomics.
Naturwissenschaften.
(2002);
89
235-249
17
Imaizumi T., Kadota A., Hasebe M., Wada M..
Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens.
.
Plant Cell.
(2002);
14
373-386
18
Jaiswal P., Ware D., Ni J. J., Chang K., Zhao W., Schmidt S., Pan X. K., Clark K., Teytelman L., Cartinhour S., Stein L., McCouch S..
Gramene: development and integration of trait and gene ontologies for rice.
Comparative and Functional Genomics.
(2002);
3
132-136
19
Katagiri F..
Attacking complex problems with the power of systems biology.
Plant Physiology.
(2003);
132
417-419
20
Kempin S. A., Liljegren S. J., Block L. M., Rounsly S. D., Yanofsky M. F..
Targeted disruption in Arabidopsis.
.
Nature.
(1997);
389
802-803
21
May B. P., Liu H., Vollbrecht E., Senior L., Rabinowicz P. D., Roh D., Pan X. K., Stein L., Freeling M., Alexander D., Martienssen R..
Maize-targeted mutagenesis: A knock-out resource for maize.
Proceedings of the National Academy of Sciences of the USA.
(2003);
100
11541-11546
22
Nishiyama T., Hiwatahi Y., Sakakibara K., Kato M., Hasebe M..
Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis.
DNA Research.
(2000);
7
9-17
23
Penmetsa R. V., Ha S. B..
Factors influencing transient gene-expression in electroporated tall fescue protoplasts.
Plant Science.
(1994);
100
171-178
24
Provart N. J., McCourt P..
Systems approaches to understanding cell signaling and gene regulation.
Current Opinion in Plant Biology.
(2004);
7
605-609
25
Puchta H., Swoboda P., Gal S., Blot M., Hohn B..
Somatic intrachromosomal homologous recombination events in populations of plant siblings.
Plant Molecular Biology.
(1995);
28
281-292
26
Rensing S. A., Rombauts S., Van de Peer Y., Reski R..
Moss transcriptome and beyond.
Trends in Plant Science.
(2002);
7
535-538
27
Reski R..
Development, genetics and molecular biology of mosses.
Botanica Acta.
(1998);
111
1-15
28
Reutter K., Atzorn R., Hadeler B., Schmülling T., Reski R..
Expression of the bacterial ipt gene in Physcomitrella rescues mutations in budding and in plastid division.
.
Planta.
(1998);
206
196-203
29
Sarnighausen E., Wurtz V., Heintz D., van Dorsselaer A., Reski R..
Mapping of the Physcomitrella patens proteome.
Phytochemistry.
(2004);
65
1589-1607
30
Schaefer D. G..
Gene targeting in Physcomitrella patens.
.
Current Opinion in Plant Biology.
(2001);
4
143-150
31
Schaefer D. G., Zrӱd J.-P..
Efficient gene targeting in the moss, Physcomitrella patens.
.
Plant Journal.
(1997);
11
1195-1206
32
Schaefer D. G., Zrӱd J.-P., Knight C. D., Cove D. J..
Stable transformation of the moss Physcomitrella patens.
.
Molecular and General Genetics.
(1991);
226
418-424
33
Schween G., Fleig S., Reski R..
High-throughput-PCR screen of 15 000 transgenic Physcomitrella plants.
Plant Molecular Biology Reporter.
(2002);
20
43-47
34
Schween G., Gorr G., Hohe A., Reski R..
Unique tissue-specific cell cycle in Physcomitrella.
.
Plant Biology.
(2003 a);
5
50-58
35
Schween G., Hohe A., Koprivova A., Reski R..
Effects of nutrients, cell density and culture techniques on protoplast regeneration and early protonema development in a moss, Physcomitrella patens.
.
Journal of Plant Physiology.
(2003 b);
160
209-212
36
Schween G., Schulte J., Hohe A., Reski R..
Effect of ploidy level on growth, differentiation and morphology in Physcomitrella patens.
.
The Bryologist.
(2005);
108
27-35
37
Strepp R., Scholz S., Kruse S., Speth V., Reski R..
Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin.
Proceedings of the National Academy of Sciences of the USA.
(1998);
95
4368-4373
38
Terada R., Urawa H., Inagaki Y., Tsugane K., Iida S..
Efficient gene targeting by homologous recombination in rice.
Nature Biotechnology.
(2002);
20
1030-1034
39
Tzafrir I., Dickermann A., Brazhnik O., Nguyen Q., McElver J., Frye C., Patton D., Meinke D..
The Arabidopsis SeedGenes Project.
Nucleic Acid Research.
(2003);
31
90-93
R. Reski
Plant Biotechnology Faculty of Biology University of Freiburg
Schänzlestraße 1
79104 Freiburg
Germany
Email: ralf.reski@biologie.uni-freiburg.de
Editor: H. Rennenberg