Zusammenfassung
Ziel: Vergleich der virtuellen und der flexiblen Bronchoskopie bezüglich der Detektion von bronchialen Stenosen. Material und Methode: 26 mit flexibler Videobronchoskopie und virtueller Bronchoskopie an einem Mehrzeilen-Spiral-CT untersuchte Patienten wurden retrospektiv bezüglich der Detektion von Bronchusstenosen verglichen. Das Tracheobronchialsystem wurde in: Trachea, 2 Haupt-, 6 Lappen-, 18 Segment- und 36 Subsegmentbronchien = 63 Bronchusabschnitte eingeteilt. Unterschieden wurden: Stenosen < 50 %, von 50 - 95 % und komplette Verschlüsse. Ergebnisse: Die virtuelle Bronchoskopie zeigte 25, die flexible 17 Stenosen. Stenosen < 50 % fanden sich bei der virtuellen Bronchoskopie 14-mal, bei der flexiblen 10-mal, Stenosen von 50 - 95 % 7-mal bzw. 4-mal, komplette Verschlüsse 4-mal bzw. 3-mal. Die virtuelle Bronchoskopie zeigte eine nicht signifikant höhere Rate von Stenosen (Stenosen < 50 %: p = 0,352, 50 - 95 %: p = 0,339, komplette Verschlüsse: p = 0,696). Schlussfolgerung: Die virtuelle Bronchoskopie ermöglicht eine hochaufgelöste endoluminale Bildgebung der Bronchien bis zu den Segment- und Subsegmentbronchien. Sie ist bezüglich der Detektion von Stenosen der flexiblen Bronchoskopie überlegen.
Abstract
Purpose: To compare virtual with flexible bronchoscopy for the detection of bronchial stenoses. Materials and Methods: In a retrospective study, we compared the results of 26 patients, who had clinical suspected pathologies of the tracheobronchial airways and underwent both flexible bronchoscopy and multislice CT with 3D surface rendering of the airways. Flexible bronchoscopy and virtual bronchoscopy were compared as to the rate of detecting bronchial stenoses. For statistical analysis, we divided the tracheobronchial tree in the following sections: trachea, 2 main bronchi, 6 lobar bronchi, 18 segmental bronchi and 36 subsegmental bronchi, corresponding to 63 bronchial sections for each patient (on average) and a total of 1638 bronchial sections for all 26 patients. We graded the bronchial stenosis as less than 50 %, as 50 to 95 % and as complete obstruction. Results: Virtual bronchoscopy detected 25 bronchial stenoses, while flexible bronchoscopy only revealed 17 stenoses. Stenoses with a diameter less than 50 % were found with virtual bronchoscopy 14 times and with flexible bronchoscopy 10 times. Stenoses with a diameter between 50 and 95 % were detected 7 and 4 times, respectively, and complete obstructions 4 and 3 times, respectively. Tracheobronchial stenoses were well recognized with virtual bronchoscopy. Moreover, the virtual method enabled the visualization of high-grade stenoses and post-stenotic areas that could not be passed by the fiberoptic bronchoscope. Virtual bronchoscopy detected stenoses at a higher rate but the difference was not statistically significant (stenoses < 50 %: p = 0.352, 50 - 95 %: p = 0.339, complete obstruction: p = 0.696). Conclusion: Virtual bronchoscopy is a useful non-invasive method for the diagnostic evaluation of the tracheobronchial tree. In comparison with flexible bronchoscopy, virtual bronchoscopy is superior in revealing high-grade stenoses and visualizing post-stenotic areas.
Key words
Virtual bronchoscopy - 3D-reconstruction - fiberoptic bronchoscopy - stenotic bronchus - multislice computed tomography
Literatur
1
Shure D.
Fiberoptic bronchoskopy: diagnostic applications.
Clin Chest Med.
1987;
8
1-3
2
Higgins W E, Ramaswamy K, Swift R D. et al .
Virtual bronchoscopy for three-dimensional pulmonary image assessment: state of the art and future needs.
Radiographics.
1998;
18
761-778
3
Haponik E F, Aquino S L, Vining D J.
Virtualbronchoscopy.
Clin Chest Med.
1999;
20
201-217
4
Boiselle P M, Ernst A.
Recent advances in central airway imaging.
Chest.
2002;
121
1651-1660
5
Naidich D P, Harkin T J.
Airways and lung: correlation of CT with fiberoptic bronchoscopy.
Radiology.
1995;
197
1-12
6
Vining D J, Lau K, Choplin R H. et al .
Virtual bronchoscopy: relationship of virtual reality endobronchial simulations to actual bronchoscopic findings.
Chest.
1996;
109
549-553
7
Aquino S L, Vining D J.
Virtual bronchoscopy.
Clin Chest Med.
1999;
20
725-730
8
Kauczor H U, Woicke B, Fischer B. et al .
Three-dimensional helical CT of the tracheobronchial tree: evaluation of imaging protocols and assessment of suspected stenoses with bronchoscopic correlation.
AJR.
1996;
167
419-424
9
Ferretti G R, Knopfloch J, Bricault I. et al .
Central airway stenosis: preliminary results of spiral-CT-generated virtual bronchoscopy simulations in 29 patients.
Eur Radiol.
1997;
7
854-859
10
Fleiter T, Merkle E M, Aschoff A J. et al .
Comparison of real-time virtual and fiberoptic bronchoscopy in patients with bronchial carcinoma: opportunities and limitations.
AJR Am J Roentgenol.
1997;
169
1591-1595
11
Rapp-Bernhardt U, Welte T, Budinger M. et al .
Comparison of three-dimensional virtual endoscopy with bronchoscopy in patients with oesophageal carcinoma infiltrating the tracheobronchial tree.
Br J Radiol.
1998;
71
1271-1278
12
Lam W W, Tam P KH, Chan F L. et al .
Esophageal atresia and tracheal stenosis: use of three-dimensional CT and virtual bronchoscopy in neonates, infants and children.
AJR Am J Roentgenol.
2000;
174
1009-1012
13
Summers R M, Aggarwal N R, Sneller M C. et al .
CT virtual bronchoscopy of the central airways in patients with Wegener’s granulomatosis.
Chest.
2002;
121
242-250
14
Rapp-Bernhardt U, Welte T, Doehring W. et al .
Diagnostic potential of virtual bronchoscopy: advantages in comparison with axial CT slices, MPR and MIP.
Eur Radiol.
2000;
10
981-988
15
Hoppe H, Walder B, Sonnenschein M. et al .
Multidetector CT virtual bronchoscopy to grade tracheobronchial stenosis.
AJR Am J Roentgenol.
2002;
178
1195-1200
16
Hoppe H, Dinkel H P, Walder B. et al .
Grading Airway Stenosis Down to the Segmental Level Using Virtual Bronchoscopy.
Chest.
2004;
125
704-711
17
Sorantin E, Geiger B, Lindbichler F. et al .
CT-based virtual tracheo-bronchoscopy in children: comparison with axial CT and multiplanar recontruction; preliminary results.
Pediatr Radiol.
2002;
32
8-12
18
Lacrosse M, Trigaux J P, Van Beers B E. et al .
3D Spiral CT of the tracheobronchial tree.
J Comput Assist Tomogr.
1995;
19
341-347
19
Eibel R, Tuerk T, Kulinna C. et al .
Wertigkeit multiplanare Reformationen (MPR) in der Mehrschicht-Spiral-CT der Lunge.
Fortschr Röntgenstr.
2001;
173
57-64
20
Lee K S, Yoon J H, Kim T K. et al .
Evaluation of tracheobronchial disease with helical CT with multiplanar and three-dimensional reconstruction: correlation with bronchoscopy.
RadioGraphics.
1997;
17
555-567
21
McAdams H P, Palmer S M, Erasmus J J. et al .
Bronchial anastomic complications in lung transplant recipients: virtual bronchoscopy for non-invasive assessment.
Radiology.
1998;
209
689-695
22
Schertler T, Wildermuth S, Willmann J K. et al .
Retrospectively ECG- Gated Multi-Detector-Row CT of the Chest: Does ECG-Gating Improve Three-Dimensional Visualisation of the Bronchial Tree?.
Fortschr Röntgenstr.
2004;
176
513-521
23
Liewald F, Lang G, Fleiter T. et al .
Comparison of virtual and fiberoptic bronchoscopy.
Thoracic Cardiovasc Surg.
1998;
46
361-364
Dr. R. Röttgen
Campus Virchow-Klinikum, Klinik für Strahlenheilkunde, Charité Universitätsmedizin Berlin
Augustenburger Platz 1
13353 Berlin
Phone: ++49/30/4 50 65 74 40
Fax: ++49/30/4 50 55 79 00
Email: r.roettgen@t-online.de