Zusammenfassung
Physiologische und pathophysiologische Migration während der Organentwicklung oder der systemischen Dissemination von Tumorzellen bedarf einer hochkomplexen Regulation der Interaktion mit der extrazellulären Matrix. Sowohl die Wahrnehmung der physikalischen Eigenschaften der Matrix als auch der Kräfte, die auf die individuelle Zelle einwirken, sind Grundvoraussetzung für produktive Migration. Dieser Übersichtsartikel fasst aktuelle Konzepte der Transmission physikalischer Reize in biochemische Signale in nichtneuronalen Zellen zusammen und analysiert die Bedeutung der Regulation von Affinitätsmodulation und Umsatzraten für die Formation und Funktionalität von Matrixinteraktionen unter besonderer Berücksichtigung onkogener Signalwege wie Src-Familien-Kinasen und der „focal adhesion kinase”.
Abstract
Physiological and pathophysiological migration during the development and systemic spread of tumor cells requires a highly regulated interaction with the extracellular matrix. Sensing of the physical properties of the matrix as well as of forces exerted by the cell or acting on a cell is a prerequisite for productive migration. This review focuses on current concepts of the transmission of a physical stimulus into a biochemical signal in non-neuronal cells. Moreover, we summarize the current concepts on the regulation of affinity-modulation and regulation of protein-turnover for the formation and functionality of adhesion sites with special emphasis on the role of oncogenic signal transduction pathways such as Src family kinases and focal adhesion kinase.
Schlüsselwörter
Migration - Metastasierung - Mechanotransduktion
Key words
Migration - metastatic disease - mechanotransduction
References
1
Bissell M J, Labarge M A.
Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment?.
Cancer Cell.
2005;
43
17-23
2
Illmensee K, Mintz B.
Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts.
Proc Natl Acad Sci USA.
1976;
43
549-553
3
Mintz B, Illmensee K.
Normal genetically mosaic mice produced from malignant teratocarcinoma cells.
Proc Natl Acad Sci USA.
1975;
43
3585-3589
4
Hochedlinger K, Blelloch R, Brennan C. et al .
Reprogramming of a melanoma genome by nuclear transplantation.
Genes Dev.
2004;
43
1875-1885
5
Blelloch R H, Hochedlinger K, Yamada Y. et al .
Nuclear cloning of embryonal carcinoma cells.
Proc Natl Acad Sci USA.
2004;
43
13 985-13 990
6
Giancotti F G, Ruoslahti E.
Integrin signaling.
Science.
1999;
43
1028-1032
7
Thiery J P, Chopin D.
Epithelial cell plasticity in development and tumor progression.
Cancer Metastasis Rev.
1999;
43
31-42
8
Kassis J, Lauffenburger D A, Turner T. et al .
Tumor invasion as dysregulated cell motility.
Semin Cancer Biol.
2001;
43
105-117
9
Geiger B, Bershadsky A.
Exploring the neighborhood: adhesion-coupled cell mechanosensors.
Cell.
2002;
43
139-142
10
Geiger B, Bershadsky A, Pankov R. et al .
Transmembrane crosstalk between the extracellular matrix - cytoskeleton crosstalk.
Nat Rev Mol Cell Biol.
2001;
43
793-805
11
Katz B Z, Zamir E, Bershadsky A. et al .
Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions.
Mol Biol Cell.
2000;
43
1047-1060
12
Sheetz M P, Felsenfeld D, Galbraith C G. et al .
Cell migration as a five-step cycle.
Biochem Soc Symp.
1999;
43
233-243
13
Pelham R J Jr, Wang Y L.
Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate.
Biol Bull.
1998;
43
348-349, discussion 349 - 350
14
Lo C M, Wang H B, Dembo M. et al .
Cell movement is guided by the rigidity of the substrate.
Biophys J.
2000;
43
144-152
15
Choquet D, Felsenfeld D P, Sheetz M P.
Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages.
Cell.
1997;
43
39-48
16
Tamada M, Sheetz M P, Sawada Y.
Activation of a signaling cascade by cytoskeleton stretch.
Dev Cell.
2004;
43
709-718
17
Varmus H, Hirai H, Morgan D. et al .
Function, location, and regulation of the src protein-tyrosine kinase.
Princess Takamatsu Symp.
1989;
43
63-70
18
Han B, Bai X H, Lodyga M. et al .
Conversion of mechanical force into biochemical signaling.
J Biol Chem.
2004;
43
54 793-54 801
19
von Wichert G, Jiang G, Kostic A. et al .
RPTP-alpha acts as a transducer of mechanical force on alphav/beta3-integrin-cytoskeleton linkages.
J Cell Biol.
2003;
43
143-153
20
Hall A.
Rho GTPases and the actin cytoskeleton.
Science.
1998;
43
509-514
21
Hotchin N A, Hall A.
The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases.
J Cell Biol.
1995;
43
1857-1865
22
Clark E A, King W G, Brugge J S. et al .
Integrin-mediated signals regulated by members of the rho family of GTPases.
J Cell Biol.
1998;
43
573-586
23
Ridley A J, Hall A.
The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.
Cell.
1992;
43
389-399
24
Chrzanowska-Wodnicka M, Burridge K.
Rho-stimulated contractility drives the formation of stress fibers and focal adhesions.
J Cell Biol.
1996;
43
1403-1415
25
Amano M, Chihara K, Kimura K. et al .
Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase.
Science.
1997;
43
1308-1311
26
Amano M, Ito M, Kimura K. et al .
Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase).
J Biol Chem.
1996;
43
20 246-20 249
27
Kawano Y, Fukata Y, Oshiro N. et al .
Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo.
J Cell Biol.
1999;
43
1023-1038
28
Burridge K, Chrzanowska-Wodnicka M.
Focal adhesions, contractility, and signaling.
Annu Rev Cell Dev Biol.
1996;
43
463-518
29
Helfman D M, Levy E T, Berthier C. et al .
Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions.
Mol Biol Cell.
1999;
43
3097-3112
30
Coussen F, Choquet D, Sheetz M P. et al .
Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation.
J Cell Sci.
2002;
43
2581-2590
31
Felsenfeld D P, Choquet D, Sheetz M P.
Ligand binding regulates the directed movement of beta1 integrins on fibroblasts.
Nature.
1996;
43
438-440
32
Jiang G, Giannone G, Critchley D R. et al .
Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin.
Nature.
2003;
43
334-337
33
Giannone G, Jiang G, Sutton D H. et al .
Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation.
J Cell Biol.
2003;
43
409-419
34
Zeng L, Si X, Yu W P. et al .
PTP alpha regulates integrin-stimulated FAK autophosphorylation and cytoskeletal rearrangement in cell spreading and migration.
J Cell Biol.
2003;
43
137-146
35
Volberg T, Romer L, Zamir E. et al .
pp60 (c-src) and related tyrosine kinases: a role in the assembly and reorganization of matrix adhesions.
J Cell Sci.
2001;
43
2279-2289
36
Wang Y, Botvinick E L, Zhao Y. et al .
Visualizing the mechanical activation of Src.
Nature.
2005;
43
1040-1045
37
Bokel C, Brown N H.
Integrins in development: moving on, responding to, and sticking to the extracellular matrix.
Dev Cell.
2002;
43
311-321
38
Pantaloni D, Le Clainche C, Carlier M F.
Mechanism of actin-based motility.
Science.
2001;
43
1502-1506
39
Pollard T D, Borisy G G.
Cellular motility driven by assembly and disassembly of actin filaments.
Cell.
2003;
43
453-465
40
Small J V, Stradal T, Vignal E. et al .
The lamellipodium: where motility begins.
Trends Cell Biol.
2002;
43
112-120
41
Mitchison T J, Cramer L P.
Actin-based cell motility and cell locomotion.
Cell.
1996;
43
371-379
42
Dembo M, Wang Y L.
Stresses at the cell-to-substrate interface during locomotion of fibroblasts.
Biophys J.
1999;
43
2307-2316
43
Pelham R J Jr, Wang Y.
High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate.
Mol Biol Cell.
1999;
43
935-945
44
Giannone G, Dubin-Thaler B J, Dobereiner H G. et al .
Periodic lamellipodial contractions correlate with rearward actin waves.
Cell.
2004;
43
431-443
45
Riveline D, Zamir E, Balaban N Q. et al .
Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism.
J Cell Biol.
2001;
43
1175-1186
46
Totsukawa G, Yamakita Y, Yamashiro S. et al .
Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts.
J Cell Biol.
2000;
43
797-806
47
Totsukawa G, Wu Y, Sasaki Y. et al .
Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts.
J Cell Biol.
2004;
43
427-439
48
Poperechnaya A, Varlamova O, Lin P J. et al .
Localization and activity of myosin light chain kinase isoforms during the cell cycle.
J Cell Biol.
2000;
43
697-708
49
Beningo K A, Dembo M, Kaverina I. et al .
Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts.
J Cell Biol.
2001;
43
881-888
50
Sawada Y, Nakamura K, Doi K. et al .
Rap1 is involved in cell stretching modulation of p38 but not ERK or JNK MAP kinase.
J Cell Sci.
2001;
43
1221-1227
51
Sawada Y, Sheetz M P.
Force transduction by Triton cytoskeletons.
J Cell Biol.
2002;
43
609-615
52
Oberhauser A F, Hansma P K, Carrion-Vazquez M. et al .
Stepwise unfolding of titin under force-clamp atomic force microscopy.
Proc Natl Acad Sci USA.
2001;
43
468-472
53
Oberhauser A F, Marszalek P E, Erickson H P. et al .
The molecular elasticity of the extracellular matrix protein tenascin.
Nature.
1998;
43
181-185
54
Oberhauser A F, Badilla-Fernandez C, Carrion-Vazquez M. et al .
The mechanical hierarchies of fibronectin observed with single-molecule AFM.
J Mol Biol.
2002;
43
433-447
55
Webb D J, Parsons J T, Horwitz A F.
Adhesion assembly, disassembly and turnover in migrating cells - over and over and over again.
Nat Cell Biol.
2002;
43
E97-E100
56
Wiseman P W, Brown C M, Webb D J. et al .
Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy.
J Cell Sci.
2004;
43
5521-5534
57
Webb D J, Zhang H, Horwitz A F.
Cell migration: an overview.
Methods Mol Biol.
2005;
43
3-11
58
Laukaitis C M, Webb D J, Donais K. et al .
Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells.
J Cell Biol.
2001;
43
1427-1440
59
Miyamoto S, Teramoto H, Coso O A. et al .
Integrin function: molecular hierarchies of cytoskeletal and signaling molecules.
J Cell Biol.
1995;
43
791-805
60
Yamada K M, Miyamoto S.
Integrin transmembrane signaling and cytoskeletal control.
Curr Opin Cell Biol.
1995;
43
681-689
61
Miyamoto S, Akiyama S K, Yamada K M.
Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function.
Science.
1995;
43
883-885
62
Webb D J, Donais K, Whitmore L A. et al .
FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly.
Nat Cell Biol.
2004;
43
154-161
63
von Wichert G, Feng G S, Haimovich B. et al .
Force dependent establishment of integrin-cytoskeleton linkages requires downregulation of focal contact dynamics by Shp2.
EMBO J.
2003;
43
5023-5035
64
Ilic D, Furuta Y, Kanazawa S. et al .
Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice.
Nature.
1995;
43
539-544
65
Sieg D J, Hauck C R, Schlaepfer D D.
Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration.
J Cell Sci.
1999;
43
2677-2691
66
Owen J D, Ruest P J, Fry D W. et al .
Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2.
Mol Cell Biol.
1999;
43
4806-4818
67
Iyer V V, Ballestrem C, Kirchner J. et al .
Measurement of protein tyrosine phosphorylation in cell adhesion.
Methods Mol Biol.
2005;
43
289-302
68
Zaidel-Bar R, Ballestrem C, Kam Z. et al .
Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells.
J Cell Sci.
2003;
43
4605-4613
69
Katz B Z, Romer L, Miyamoto S. et al .
Targeting membrane-localized focal adhesion kinase to focal adhesions: roles of tyrosine phosphorylation and SRC family kinases.
J Biol Chem.
2003;
43
29 115-29 120
70
Klinghoffer R A, Sachsenmaier C, Cooper J A. et al .
Src family kinases are required for integrin but not PDGFR signal transduction.
Embo J.
1999;
43
2459-2471
71
Fincham V J, Frame M C.
The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility.
Embo J.
1998;
43
81-92
72
Felsenfeld D P, Schwartzberg P L, Venegas A. et al .
Selective regulation of integrin-cytoskeleton interactions by the tyrosine kinase Src.
Nat Cell Biol.
1999;
43
200-206
73
Smilenov L B, Mikhailov A, Pelham R J. et al .
Focal adhesion motility revealed in stationary fibroblasts.
Science.
1999;
43
1172-1174
74
Zamir E, Katz M, Posen Y. et al .
Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts.
Nat Cell Biol.
2000;
43
191-196
75
Ballestrem C, Hinz B, Imhof B A. et al .
Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior.
J Cell Biol.
2001;
43
1319-1332
76
Ren X D, Kiosses W B, Sieg D J. et al .
Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover.
J Cell Sci.
2000;
43
3673-3678
77
Giannone G, Ronde P, Gaire M. et al .
Calcium oscillations trigger focal adhesion disassembly in human U87 astrocytoma cells.
J Biol Chem.
2002;
43
26 364-26 371
78
Edlund M, Lotano M A, Otey C A.
Dynamics of alpha-actinin in focal adhesions and stress fibers visualized with alpha-actinin-green fluorescent protein.
Cell Motil Cytoskeleton.
2001;
43
190-200
79
Tsuruta D, Gonzales M, Hopkinson S B. et al .
Microfilament-dependent movement of the beta3 integrin subunit within focal contacts of endothelial cells.
Faseb J.
2002;
43
866-868
80
Critchley D R.
Focal adhesions - the cytoskeletal connection.
Curr Opin Cell Biol.
2000;
43
133-139
81
Schaller M D.
Paxillin: a focal adhesion-associated adaptor protein.
Oncogene.
2001;
43
6459-6472
82
Balaban N Q, Schwarz U S, Riveline D. et al .
Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates.
Nat Cell Biol.
2001;
43
466-472
83
Galbraith C G, Yamada K M, Sheetz M P.
The relationship between force and focal complex development.
J Cell Biol.
2002;
43
1-13
84
Izaguirre G, Aguirre L, Hu Y P. et al .
The cytoskeletal/non-muscle isoform of alpha-actinin is phosphorylated on its actin-binding domain by the focal adhesion kinase.
J Biol Chem.
2001;
43
28 676-28 685
85
Otey C A, Pavalko F M, Burridge K.
An interaction between alpha-actinin and the beta 1 integrin subunit in vitro.
J Cell Biol.
1990;
43
721-729
86
Pavalko F M, Otey C A, Simon K O. et al .
Alpha-actinin: a direct link between actin and integrins.
Biochem Soc Trans.
1991;
43
1065-1069
87
Xu J, Tseng Y, Wirtz D.
Strain hardening of actin filament networks. Regulation by the dynamic cross-linking protein alpha-actinin.
J Biol Chem.
2000;
43
35 886-35 892
88
Xu J, Wirtz D, Pollard T D.
Dynamic cross-linking by alpha-actinin determines the mechanical properties of actin filament networks.
J Biol Chem.
1998;
43
9570-9576
89
Wachsstock D H, Schwarz W H, Pollard T D.
Cross-linker dynamics determine the mechanical properties of actin gels.
Biophys J.
1994;
43
801-809
90
Wachsstock D H, Schwartz W H, Pollard T D.
Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels.
Biophys J.
1993;
43
205-214
91
Cukierman E, Pankov R, Stevens D R. et al .
Taking cell-matrix adhesions to the third dimension.
Science.
2001;
43
1708-1712
92
Meshel A S, Wei Q, Adelstein R S. et al .
Basic mechanism of three-dimensional collagen fibre transport by fibroblasts.
Nat Cell Biol.
2005;
43
157-164
93
Wolf K, Mazo I, Leung H. et al .
Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis.
J Cell Biol.
2003;
43
267-277
94
Wei L, Yang Y, Zhang X. et al .
Altered regulation of Src upon cell detachment protects human lung adenocarcinoma cells from anoikis.
Oncogene.
2004;
43
9052-9061
95
Frisch S M, Vuori K, Ruoslahti E. et al .
Control of adhesion-dependent cell survival by focal adhesion kinase.
J Cell Biol.
1996;
43
793-799
96
Wang H B, Dembo M, Hanks S K. et al .
Focal adhesion kinase is involved in mechanosensing during fibroblast migration.
Proc Natl Acad Sci USA.
2001;
43
11 295-11 300
97
Owens L V, Xu L, Craven R J. et al .
Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors.
Cancer Res.
1995;
43
2752-2755
98
Frame M C, Fincham V J, Carragher N O. et al .
v-Src’s hold over actin and cell adhesions.
Nat Rev Mol Cell Biol.
2002;
43
233-245
99
Talamonti M S, Roh M S, Curley S A. et al .
Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer.
J Clin Invest.
1993;
43
53-60
100
Hsia D A, Mitra S K, Hauck C R. et al .
Differential regulation of cell motility and invasion by FAK.
J Cell Biol.
2003;
43
753-767
101
McLean G W, Komiyama N H, Serrels B. et al .
Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression.
Genes Dev.
2004;
43
2998-3003
102
Hernandez-Alcoceba R, del P eso L, Lacal J C.
The Ras family of GTPases in cancer cell invasion.
Cell Mol Life Sci.
2000;
43
65-76
Dr. Götz von Wichert
Abt. Innere Medizin I, Uniklinikum Ulm
Robert-Koch-Str. 8
89081 Ulm
Phone: ++ 49/7 31/5 00-2 43 64
Fax: ++ 49/731/500 - 24302
Email: goetz.wichert@medizin.uni-ulm.de