Aktuelle Rheumatologie 2006; 31(1): 15-23
DOI: 10.1055/s-2005-858834
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Pathogenese der systemischen Sklerose (Sklerodermie)

The Pathogenesis of Systemic SclerosisL. C. Huber1 , J. H. W. Distler1 , S. Gay1 , O. Distler1
  • 1Zentrum für Experimentelle Rheumatologie, WHO Collaborating Center for Molecular Biology and Novel Therapeutic Strategies for Rheumatic Diseases, Universitäts-Spital Zürich, Schweiz
Further Information

Publication History

Publication Date:
15 February 2006 (online)

Zusammenfassung

Die systemische Sklerose (SSc) ist eine seltene, komplexe Multisystemerkrankung, die durch eine gesteigerte Ablagerung von Bindegewebe in der Haut und in verschiedenen Organen gekennzeichnet ist. Wie bei anderen Erkrankungen aus der Gruppe der Kollagenosen ist auch die Ätiologie der SSc unbekannt. Ebenso sind die genauen Mechanismen, die in den Krankheitsverlauf involviert sind, noch weitgehend unklar. Klinisch und pathogenetisch stehen drei grundlegende Prozesse im Vordergrund: 1) die exzessive Akkumulation von Kollagen und anderen Komponenten der Extrazellulärmatrix, 2) frühe morphologische Veränderungen der kleinen Blutgefässe und 3) Störungen der zellulären und humoralen Immunantwort, die mit dem Auftreten von zum Teil krankheitsspezifischen Antikörpern einhergehen. Zum jetzigen Zeitpunkt ist unklar, wie diese drei Prozesse interagieren und letztlich zum progressiven Fortschreiten einer generalisierten Fibrose führen. In Bezug auf die einzelnen Mechanismen jedoch hat die Forschung der letzten Jahre auf molekularer Ebene markante Fortschritte erzielt, die auch das Spektrum für neue therapeutische Ansätze erweitern.

Abstract

Systemic sclerosis (SSc) is an uncommon, complex, multisystemic disorder, characterized by severe fibrosis of the skin and various internal organs. As in other collagenoses, the etiology of SSc is unknown and the exact mechanisms involved in the pathogenesis are not well understood. For the clinical and pathogenetic manifestations, however, the following key processes have been identified: 1) excessive accumulation of collagen and other components of the extracellular matrix; 2) early morphological changes in small blood vessels; and 3) alterations in the cellular and humoral immune response resulting in the production of disease-specific antibodies. Currently, it remains unclear how these processes interact, to cause a chronic and progressive fibrotic disease. Continued research, has however yielded substantial insight into the molecular understanding of several basic mechanisms, suggesting novel therapeutic targets for the future.

Literatur

  • 1 Cassirer R. Die vasomotorisch-trophischen Neurosen. Berlin; S. Karger 1912
  • 2 Ostendorf B, Maiburg B, Schneider M. Scleroderma and Paul Klee: Metamorphosis of life and art?.  Z Rheumatol. 2004;  31 318-325
  • 3 Varga J. Illness and art: the legacy of Paul Klee.  Curr Opin Rheumatol. 2004;  31 714-717
  • 4 Klemperer P, Pollak A, Baehr G. Diffuse collagen disease. Acute disseminated lupus erythematodes and diffuse scleroderma.  JAMA. 1942;  31 331-332
  • 5 Jimenez S A, Hitraya E, Varga J. Pathogenesis of scleroderma. Collagen.  Rheum Dis Clin North Am. 1996;  31 647-674
  • 6 Maul G G, Jimenez S A, Riggs E. et al . Determination of an epitope of the diffuse systemic sclerosis marker antigen DNA topoisomerase I: sequence similarity with retroviral p30gag protein suggests a possible cause for autoimmunity in systemic sclerosis.  Proc Natl Acad Sci USA. 1989;  31 8492-8496
  • 7 Dang H, Dauphinee M J, Talal N. et al . Serum antibody to retroviral gag proteins in systemic sclerosis.  Arthritis Rheum. 1991;  31 1336-1337
  • 8 Lunardi C, Bason C, Navone R. et al . Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells.  Nat Med. 2000;  31 1183-1186
  • 9 Newkirk M M, van Venrooij W J, Marshall G S. Autoimmune response to U1 small nuclear ribonucleoprotein (U1 snRNP) associated with cytomegalovirus infection.  Arthritis Res. 2001;  31 253-258
  • 10 Neidhart M, Kuchen S, Distler O. et al . Increased serum levels of antibodies against human cytomegalovirus and prevalence of autoantibodies in systemic sclerosis.  Arthritis Rheum. 1999;  31 389-392
  • 11 Arnett F C, Cho M, Chatterjee S. et al . Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts.  Arthritis Rheum. 2001;  31 1359-1362
  • 12 Feghali C A, Wright T M. Epidemiologic and clinical study of twins with scleroderma.  Arthritis and Rheum. 1995;  31
  • 13 Mayes M D, Lacey J V Jr, Beebe-Dimmer J. et al . Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population.  Arthritis Rheum. 2003;  31 2246-2255
  • 14 McNeilage L J, Youngchaiyud U, Whittingham S. Racial differences in antinuclear antibody patterns and clinical manifestations of scleroderma.  Arthritis Rheum. 1989;  31 54-60
  • 15 Johnson R W, Tew M B, Arnett F C. The genetics of systemic sclerosis.  Curr Rheumatol Rep. 2002;  31 99-107
  • 16 Reveille J D. Molecular genetics of systemic sclerosis.  Curr Opin Rheumatol. 1995;  31 522-8
  • 17 Jimenez S A, Artlett C M. Microchimerism and systemic sclerosis.  Curr Opin Rheumatol. 2005;  31 86-90
  • 18 Lambert N C, Pang J M, Yan Z. et al . Male microchimerism in women with systemic sclerosis and healthy women who have never given birth to a son.  Ann Rheum Dis. 2005;  31 845-848
  • 19 Artlett C M, Smith J B, Jimenez S A. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis.  N Engl J Med. 1998;  31 1186-1191
  • 20 Nelson J L, Furst D E, Maloney S. et al . Microchimerism and HLA-compatible relationships of pregnancy in scleroderma.  Lancet. 1998;  31 559-562
  • 21 Sawaya H H, Jimenez S A, Artlett C M. Quantification of fetal microchimeric cells in clinically affected and unaffected skin of patients with systemic sclerosis.  Rheumatology. 2004;  31 965-968
  • 22 Scaletti C, Vultaggio A, Bonifacio S. et al . Th2-oriented profile of male offspring T cells present in women with systemic sclerosis and reactive with maternal major histocompatibility complex antigens.  Arthritis Rheum. 2002;  31 445-450
  • 23 Christner P J, Artlett C M, Conway R F. et al . Increased numbers of microchimeric cells of fetal origin are associated with dermal fibrosis in mice following injection of vinyl chloride.  Arthritis Rheum. 2000;  31 2598-2605
  • 24 Okano Y. Antinuclear antibody in systemic sclerosis (scleroderma).  Rheum Dis Clin North Am. 1996;  31 709-735
  • 25 Casciola-Rosen L, Wigley F, Rosen A. Scleroderma autoantigens are uniquely fragmented by metal-catalyzed oxidation reactions: implications for pathogenesis.  J Exp Med. 1997;  31 71-79
  • 26 Chizzolini C, Raschi E, Rezzonico R. et al . Autoantibodies to fibroblasts induce a proadhesive and proinflammatory fibroblast phenotype in patients with systemic sclerosis.  Arthritis Rheum. 2002;  31 1602-1613
  • 27 Roumm A D, Whiteside T L, Medsger T A Jr. et al . Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations.  Arthritis Rheum. 1984;  31 645-653
  • 28 Hawkins R A, Claman H N, Clark R A. et al . Increased dermal mast cell populations in progressive systemic sclerosis: a link in chronic fibrosis?.  Ann Intern Med. 1985;  31 182-186
  • 29 Kraling B M, Maul G G, Jimenez S A. Mononuclear cellular infiltrates in clinically involved skin from patients with systemic sclerosis of recent onset predominantly consist of monocytes/macrophages.  Pathobiology. 1995;  31 48-56
  • 30 Kalogerou A, Gelou E, Mountantonakis S. et al . Early T cell activation in the skin from patients with systemic sclerosis.  Ann Rheum Dis. 2005;  31 1233-1235
  • 31 Sakkas L I, Platsoucas C D. Is systemic sclerosis an antigen-driven T cell disease?.  Arthritis Rheum. 2004;  31 1721-1733
  • 32 White B. Immunopathogenesis of systemic sclerosis.  Rheum Dis Clin North Am. 1996;  31 695-708
  • 33 Sakkas L I, Xu B, Artlett C M. et al . Oligoclonal T cell expansion in the skin of patients with systemic sclerosis.  J Immunol. 2002;  31 3649-3659
  • 34 Yurovsky V V, Wigley F M, Wise R A. et al . Skewing of the CD8 + T-cell repertoire in the lungs of patients with systemic sclerosis.  Hum Immunol. 1996;  31 84-97
  • 35 Distler J HW, Jüngel A, Caretto D. et al . MCP-1 released from glycosaminoglycans mediates its profibrotic effects in systemic sclerosis via the release of interleukin-4 from T-cells.  Arthritis Rheum. 2006;  31 214-225
  • 36 Seibold J R, Giorno R C, Claman H N. Dermal mast cell degranulation in systemic sclerosis.  Arthritis Rheum. 1990;  31 1702-1709
  • 37 Claman H N. On scleroderma. Mast cells, endothelial cells, and fibroblasts.  Jama. 1989;  31 1206-1209
  • 38 Wang H W, Tedla N, Hunt J E. et al . Mast cell accumulation and cytokine expression in the tight skin mouse model of scleroderma.  Exp Dermatol. 2005;  31 295-302
  • 39 Yamamoto T, Eckes B, Hartmann K. et al . Expression of monocyte chemoattractant protein-1 in the lesional skin of systemic sclerosis.  J Dermatol Sci. 2001;  31 133-139
  • 40 Everett E T, Pablos J L, Harley R A. et al . The role of mast cells in the development of skin fibrosis in tight-skin mutant mice.  Comp Biochem Physiol A Physiol. 1995;  31 159-165
  • 41 Cairns J A, Walls A F. Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts.  J Clin Invest. 1997;  31 1313-1321
  • 42 Gruber B L, Kew R R, Jelaska A. et al . Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis.  J Immunol. 1997;  31 2310-2317
  • 43 Lindstedt K A, Wang Y, Shiota N. et al . Activation of paracrine TGF-beta1 signaling upon stimulation and degranulation of rat serosal mast cells: a novel function for chymase.  Faseb J. 2001;  31 1377-1388
  • 44 Walker M, Harley R, LeRoy E C. Ketotifen prevents skin fibrosis in the tight skin mouse.  J Rheumatol. 1990;  31 57-59
  • 45 Gruber B L, Kaufman L D. A double-blind randomized controlled trial of ketotifen versus placebo in early diffuse scleroderma.  Arthritis Rheum. 1991;  31 362-366
  • 46 Ishikawa O, Ishikawa H. Macrophage infiltration in the skin of patients with systemic sclerosis.  J Rheumatol. 1992;  31 1202-1206
  • 47 Gay S, Jones R E Jr., Huang G Q. et al . Immunohistologic demonstration of plateletderived growth factor (PDGF) and sis-oncogene expression in scleroderma.  J Invest Dermatol. 1989;  31 301-303
  • 48 LeRoy E C, Mercurio S, Sherer G K. Replication and phenotypic expression of control and scleroderma human fibroblasts: response to growth factors.  Proc Natl Acad Sci USA. 1982;  31 1286-1290
  • 49 Odoux C, Crestani B, Lebrun G. et al . IL-1 beta inhibits ET-1 production by ATII cells in vitro: evidence for involvement of cyclooxygenase 2 pathway.  Am J Physiol. 1997;  31 L193-200
  • 50 Koch A E, Polverini P J, Kunkel S L. et al . Interleukin-8 as a macrophage-derived mediator of angiogenesis.  Science. 1992;  31 1798-1801
  • 51 Distler O, Distler J H, Kowal-Bielecka O. et al . Chemokines and chemokine receptors in the pathogenesis of systemic sclerosis.  Mod Rheumatol. 2002;  31 107-112
  • 52 Holcombe R F, Baethge B A, Stewart R M. et al . Cell surface expression of lysosome-associated membrane proteins (LAMPs) in scleroderma: relationship of lamp2 to disease duration, anti-Sc170 antibodies, serum interleukin-8, and soluble interleukin-2 receptor levels.  Clin Immunol Immunopathol. 1993;  31 31-39
  • 53 Reitamo S, Remitz A, Varga J. et al . Demonstration of interleukin 8 and autoantibodies to interleukin 8 in the serum of patients with systemic sclerosis and related disorders.  Arch Dermatol. 1993;  31 189-193
  • 54 Southcott A M, Jones K P, Li D. et al . Interleukin-8. Differential expression in lone fibrosing alveolitis and systemic sclerosis.  Am J Respir Crit Care Med. 1995;  31 1604-1612
  • 55 Hasegawa M, Sato S, Takehara K. Augmented production of chemokines (monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta) in patients with systemic sclerosis: MCP-1 and MIP-1alpha may be involved in the development of pulmonary fibrosis.  Clin Exp Immunol. 1999;  31 159-165
  • 56 Distler O, Rinkes B, Hohenleutner U. et al . Expression of RANTES in biopsies of skin and upper gastrointestinal tract from patients with systemic sclerosis.  Rheumatol Int. 1999;  31 39-46
  • 57 Distler O, Pap T, Kowal-Bielecka O. et al . Overexpression of monocyte chemoattractant protein 1 in systemic sclerosis: role of platelet-derived growth factor and effects on monocyte chemotaxis and collagen synthesis.  Arthritis Rheum. 2001;  31 2665-2678
  • 58 Denton C P, Shi-Wen X, Sutton A. et al . Scleroderma fibroblasts promote migration of mononuclear leucocytes across endothelial cell monolayers.  Clin Exp Immunol. 1998;  31 293-300
  • 59 Salcedo R, Ponce M L, Young H A. et al . Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression.  Blood. 2000;  31 34-40
  • 60 Mavalia C, Scaletti C, Romagnani P. et al . Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis.  Am J Pathol. 1997;  31 1751-1758
  • 61 Lloyd C M, Dorf M E, Proudfoot A. et al . Role of MCP-1 and RANTES in inflammation and progression to fibrosis during murine crescentic nephritis.  J Leukoc Biol. 1997;  31 676-680
  • 62 LeRoy E C. Systemic sclerosis. A vascular perspective.  Rheum Dis Clin North Am. 1996;  31 675-694
  • 63 Distler J H, Kalden J R, Gay S. et al . Vascular changes in the pathogenesis of systemic sclerosis.  Z Rheumatol. 2004;  31 446-450
  • 64 Sgonc R, Gruschwitz M S, Dietrich H. et al . Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma.  J Clin Invest. 1996;  31 785-792
  • 65 Sgonc R, Gruschwitz M S, Boeck G. et al . Endothelial cell apoptosis in systemic sclerosis is induced by antibody-dependent cell-mediated cytotoxicity via CD95.  Arthritis Rheum. 2000;  31 2550-2562
  • 66 Distler O, Distler J H, Scheid A. et al . Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis.  Circ Res. 2004;  31 109-116
  • 67 Distler O, Neidhart M, Gay R E. et al . The molecular control of angiogenesis.  Int Rev Immunol. 2002;  31 33-49
  • 68 Distler J H, Hirth A, Kurowska-Stolarska M. et al . Angiogenic and angiostatic factors in the molecular control of angiogenesis.  Q J Nucl Med. 2003;  31 149-161
  • 69 Distler O, Del Rosso A, Giacomelli R. et al . Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers.  Arthritis Res. 2002;  31 R11
  • 70 Choi J J, Min D J, Cho M L. et al . Elevated vascular endothelial growth factor in systemic sclerosis.  J Rheumatol. 2003;  31 1529-1533
  • 71 Dor Y, Djonov V, Abramovitch R. et al . Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy.  Embo J. 2002;  31 1939-1947
  • 72 Kuwana M, Okazaki Y, Yasuoka H. et al . Defective vasculogenesis in systemic sclerosis.  Lancet. 2004;  31 603-610
  • 73 Atamas S P. Complex cytokine regulation of tissue fibrosis.  Life Sci. 2002;  31 631-643
  • 74 Postlethwaite A E, Shigemitsu H, Kanangat S. Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis.  Curr Opin Rheumatol. 2004;  31 733-738
  • 75 Leask A, Abraham D J. TGF-beta signaling and the fibrotic response.  Faseb J. 2004;  31 816-827
  • 76 Clark D A, Coker R. Transforming growth factor-beta (TGF-beta).  Int J Biochem Cell Biol. 1998;  31 293-298
  • 77 Wrana J L, Attisano L. The Smad pathway.  Cytokine Growth Factor Rev. 2000;  31 5-13
  • 78 Massague J. How cells read TGF-beta signals.  Nat Rev Mol Cell Biol. 2000;  31 169-178
  • 79 Mori Y, Chen S J, Varga J. Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts.  Arthritis Rheum. 2003;  31 1964-1978
  • 80 Varga J. Scleroderma and Smads: dysfunctional Smad family dynamics culminating in fibrosis.  Arthritis Rheum. 2002;  31 1703-1713
  • 81 Dong C, Zhu S, Wang T. et al . Deficient Smad7 expression: a putative molecular defect in scleroderma.  Proc Natl Acad Sci USA. 2002;  31 3908-3913
  • 82 Saitta B, Gaidarova S, Cicchillitti L. et al . CCAAT binding transcription factor binds and regulates human COL1A1 promoter activity in human dermal fibroblasts: demonstration of increased binding in systemic sclerosis fibroblasts.  Arthritis Rheum. 2000;  31 2219-2229
  • 83 Tan E M, Rodnan G P, Garcia I. et al . Diversity of antinuclear antibodies in progressive systemic sclerosis. Anti-centromere antibody and its relationship to CREST syndrome.  Arthritis Rheum. 1980;  31 617-625
  • 84 Marasini B, Gagetta M, Rossi V. et al . Rheumatic disorders and primary biliary cirrhosis: an appraisal of 170 Italian patients.  Ann Rheum Dis. 2001;  31 1046-1049
  • 85 Kane G C, Varga J, Conant E F. et al . Lung involvement in systemic sclerosis (scleroderma): relation to classification based on extent of skin involvement or autoantibody status.  Resp Med. 1996;  31 223-230
  • 86 Harvey G R, Butts S, Rands A L. et al . Clinical and serological associations with anti-RNA polymerase antibodies in systemic sclerosis.  Clin Exp Immunol. 1999;  31 395-402
  • 87 Reveille J D, Solomon D H. Evidence-based guidelines for the use of immunologic tests: anticentromere, Scl-70, and nucleolar antibodies.  Arthritis Rheum. 2003;  31 399-412
  • 88 Greidinger E M, Flaherty K T, White B. et al . African-American race and antibodies to topoisimerase I are associated with increased severity of scleroderma lung disease.  Chest. 1998;  31 801-807
  • 89 Jacobsen S, Ullman S, Shen G Q. et al . Influence of clinical features, serum antinuclear antibodies, and lung function on survival of patients with systemic sclerosis.  J Rheumatol. 2001;  31 2454-2459

Oliver Distler, MD

Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zürich

8091 Zürich, Schweiz

Phone: ++ 41/12 55/86 22

Fax: ++ 41/12 55/41 70

Email: Oliver.Distler@usz.ch

    >