Horm Metab Res 2005; 37(3): 140-145
DOI: 10.1055/s-2005-861291
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

SAPK/JNK Plays a Role in Transforming Growth Factor-β-induced VEGF Synthesis in Osteoblasts

Y.  Kanno1, 2 , A.  Ishisaki1 , M.  Yoshida1 , H.  Tokuda2, 3 , O.  Numata2 , O.  Kozawa1
  • 1Department of Pharmacology, Gifu University School of Medicine, Japan
  • 2Institute of Biological Science, University of Tsukuba, Ibaraki, Japan
  • 3Department of Internal Medicine, Chubu National Hospital, National Institute for Longevity Sciences, Obu, Aichi, Japan
Further Information

Publication History

Received 25 May 2004

Accepted after revision 20 September 2004

Publication Date:
12 April 2005 (online)

Abstract

We previously reported that transforming growth factor-β (TGF-β) activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase, resulting in the stimulation of vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), another member of the MAP kinase superfamily, in TGF-β-induced VEGF synthesis in these cells. TGF-β markedly induced SAPK/JNK phosphorylation. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced TGF-β-induced VEGF synthesis. SP600125 suppressed TGF-β-induced SAPK/JNK phosphorylation. PD98059, an inhibitor of upstream kinase of p44/p42 MAP kinase and SB203580, an inhibitor of p38 MAP kinase, each failed to reduce TGF-β-induced SAPK/JNK phosphorylation. A combination of SP600125 and PD98059 or SP600125 and SB203580 suppressed TGF-β-stimulated VEGF synthesis in an additive manner. These results strongly suggest that TGF-β activates SAPK/JNK in osteoblasts, and that SAPK/JNK plays a role in addition to p42/p44 MAP kinase and p38 MAP kinase in TGF-β-induced VEGF synthesis.

References

  • 1 Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor.  Endocr Rev. 1997;  18 4-25
  • 2 Gerber H-P, Vu T H, Ryan A M, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation.  Nat Med. 1999;  5 623-628
  • 3 Goad D L, Rubin J, Wang H, Tashijian A H Jr, Patterson C. Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I.  Endocrinology. 1996;  137 2262-2268
  • 4 Wang D S, Yamazaki K, Nohtomi K, Shizume K, Ohsumi K, Shibuya M, Demura H, Sato K. Increase of vascular endothelial growth factor mRNA expression by 1,25-dihydroxyvitamin D3 in human osteoblast-like cells.  J Bone Miner Res. 1996;  11 472-479
  • 5 Schalaeppi J M, Gutzwiller S, Finlenzeller G, Fournier B. 1,25-dihydroxyvitamin D3 induces the expression of vascular endothelial growth factor in osteoblastic cells.  Endocr Res. 1997;  23 213-229
  • 6 Nijweide P J, Burger E H, Feyen J HM. Cells of bone: proliferation, differentiation, and humoral regulation.  Physiol Rev. 1986;  66 855-886
  • 7 Erlebacher A, Filvaroff E H, Girelman S E, Derynck R. Toward a molecular understanding of skeletal development.  Cell. 1995;  80 371-378
  • 8 Saadeh P B, Mehrara B J, Steinbrech D S, Dudziak M E, Greenwald J A, Luchs J S, Spector J A, Ueno H, Gittes G K, Longaker M T. Transforming growth factor-β1 modulates the expression of vascular endothelial growth factor by osteoblasts.  American J Physiol. 1999;  277 C628-C637
  • 9 Chua C C, Hamdy R C, Chua B H. Mechanism of transforming growth factor-β-induced expression of vascular endothelial growth factor in murine osteoblastic MC3T3-E1 cells.  Biochim Biophys Acta. 2000;  1497 69-76
  • 10 Massague J, Blain S W, Lo R S. TGF-β signaling in growth control, cancer, and heritable disorders.  Cell. 2000;  103 295-309
  • 11 Bonewald L F. Transforming growth factor-beta. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology, 2nd ed. San Diego; Academic Press 2002: 903-918
  • 12 Heldin C H, Miyazono K, ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins.  Nature. 1997;  390 465-471
  • 13 Massague J. TGF-β signal transduction.  Ann Rev Biochem. 1998;  67 753-791
  • 14 Miyazono K, Kusanagi K, Inoue H. Divergence and convergence of TGF-β/BMP signaling.  J Cell Physiol. 2001;  187 265-276
  • 15 Widmann C, Gibson S, Jarpe M B, Johnson G L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human.  Physiol Rev. 1999;  79 143-180
  • 16 Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction.  Science. 1995;  270 2008-2011
  • 17 Palcy S, Goltzman D. Protein kinase signalling pathways involved in the up-regulation of the rat alpha1(I) collagen gene by transforming growth factor β1 and bone morphogenetic protein 2 in osteoblastic cells.  Biochem J. 1999;  343 21-27
  • 18 Hatakeyama D, Kozawa O, Niwa M, Matsuno H, Ito H, Kato K, Tatematsu N, Shibata T, Uematsu T. Upregulation by retinoic acid of transforming growth factor-β-stimulated heat shock protein 27 induction in osteoblasts: involvement of mitogen-activated protein kinases.  Biochim Biophys Acta. 2002;  1589 15-30
  • 19 Tokuda H, Hatakeyama D, Akamatsu S, Tanabe K, Yoshida M, Shibata T, Kozawa O. Involvement of MAP kinases in TGF-β-stimulated vascular endothelial growth factor synthesis in osteoblasts.  Arch Biochem Biophys. 2003;  415 117-125
  • 20 Sudo H, Kodama H, Amagai Y, Yamamoto S, Kasai S. In vivo differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria.  J Cell Biol. 1983;  96 191-198
  • 21 Kozawa O, Tokuda H, Miwa M, Kotoyori J, Oiso Y. Cross-talk regulation between cyclic AMP production and phosphoinositide hydrolysis induced by prostaglandin E2 in osteoblast-like cells.  Exp Cell Res. 1992;  198 130-134
  • 22 Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature. 1970;  227 680-685
  • 23 Kato K, Ito H, Hasegawa K, Inaguma Y, Kozawa O, Asano T. Modulation of the stress-induced synthesis of hsp27 and αB-crystallin by cyclic AMP in C6 glioma cells.  J Neurochem. 1996;  66 946-950
  • 24 Bennett B L, Sasaki D T, Murray B W, O’Leary E C, Sakata S T, Xu W, Leisten J C, Motiwala A, Pierce S, Satoh Y, Bhagwat S S, Manning A M, Anderson D W. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal Kinase.  Proc Natl Acad Sci USA. 2001;  98 13 681-13 686
  • 25 Alessi D R, Cuenda A, Cohen P, Dudley D T, Saltiel A R. PD98059 is a specific inhibitor of the activation of mitogen-activated protein kinase in vitro and in vivo.  J Biol Chem. 1995;  270 27 489-27 494
  • 26 Cuenda A, Rouse J, Doza Y N, Meier R, Cohen P, Gallagher T F, Young P R, Lee J C. SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1.  FEBS Lett. 1995;  364 229-233
  • 27 Raingeaud J, Gupta S, Rogers J S, Dickens M, Han J, Ulevitch R J, David R J. Pro-inflammatory cytokines and enviromental stress cause p38 MAP kinase activation by dual phosphorylation on tyrosine and threonine.  J Biol Chem. 1995;  270 7420-7426
  • 28 Kanno Y, Tokuda H, Nakajima K, Ishisaki A, Shibata T, Numata O, Kozawa O. Involvement of SAPK/JNK in prostaglandin E(1)-induced VEGF synthesis in osteoblast-like cells.  Mol Cell Endocrinol.. 2004;  220 89-95
  • 29 Tokuda H, Kozawa O, Miwa M, Uematsu T. p38 mitogen-activated protein (MAP) kinase but not p44/p42 MAP kinase is involved in prostaglandin E1-induced vascular endothelial growth factor synthesis in osteoblasts.  J Endocrinol.. 2001;  170 629-638
  • 30 Sowa H, Kaji H, Yamaguchi T, Sugimoto T, Chihara K. Activations of ERK1/2 and JNK by transforming growth factor beta negatively regulate Smad3-induced alkaline phosphatase activity and mineralization in mouse osteoblastic cells.  J Biol Chem.. 2002;  277 36 024-36 031
  • 31 Yamamoto T, Kozawa O, Tanabe K, Akamatsu S, Matsuno H, Dohi S, Uematsu T. Involvement of p38 MAP kinase in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle cells.  J Cell Biochem.. 2001;  82 591-598
  • 32 Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, Shibuya M. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans.  Blood. 2001;  97 785-791
  • 33 Henriksen K, Karsdal M A, Delaissé J M, Engsig M T. RANKL and VEGF induce osteoclast chemotaxis through an ERK1/2 dependent mechanism.  J Biol Chem. 2003;  278 48 745-48 753
  • 34 Strammiello R, Benini S, Manara M C, Perdichizzi S, Serra M, Spisni E, Picci P, Scotlandi K. Impact of IGF-I/IGF-IR circuit on the angiogenetic properties of Ewing’s sarcoma cells.  Horm Metab Res.. 2003;  35 675-684

Dr. Osamu Kozawa

Department of Pharmacology · Gifu University Graduate School of Medicine ·

Gifu 501-1194 · Japan

Phone: + 81 (58) 230-6214 ·

Fax: + 81 (58) 230-6218 ·

Email: okozawa@cc.gifu-u.ac.jp