Abstract
New chiral sulfides and disulfides were synthesized from readily available and inexpensive cysteine by straightforward methods in order to elucidate the relative importance of the various donor atoms (N, O, S) available in free or alkylated form resulting in covalent or dative bonds to the metal, respectively. Their application in the addition of diethylzinc to aldehydes provides secondary alcohols with up to 99% ee, and S -configuration, when catalytic amounts of disulfide ligands with the ability to form an S-Zn bond were used. In contrast to this, benzyl alcohols with the opposite absolute configuration R could be achieved, albeit with decreased yield and enantioselectivity, by the use of alkylated sulfide ligands.
Key words
cysteine - disulfide - chiral ligands - dialkylzinc - asymmetric synthesis
References
1
Gawley RE.
Aube J.
Principles of Asymmetric Synthesis
Pergamon;
London:
1996.
2
Seyden-Penne J.
Chiral Auxiliaries and Ligands in Asymmetric Synthesis
Wiley;
New York:
1995.
3
Noyori R.
Asymmetric Catalysis in Organic Synthesis
Wiley;
New York:
1994.
4
Noyori R.
Kitamura M.
Angew. Chem., Int. Ed. Engl.
1991,
30:
49 ; Angew. Chem. 1991 , 103 , 34
5
Kitamura M.
Okada S.
Suga S.
Noyori R.
J. Am. Chem. Soc.
1989,
111:
4028
6
Yamakawa M.
Noyori R.
J. Am. Chem. Soc.
1995,
117:
6327
7
Kitamura M.
Suga S.
Oka H.
Noyori R.
J. Am. Chem. Soc.
1998,
120:
9800
8
Kitamura M.
Yamakawa M.
Oka H.
Suga S.
Noyori R.
Chem.-Eur. J.
1996,
2:
1173
9
Kitamura M.
Oka H.
Noyori R.
Tetrahedron
1999,
55:
3605
10
Bolm C.
Hildebrand JP.
Muniz K.
Hermanns N.
Angew. Chem. Int. Ed.
2001,
40:
3284 ; Angew. Chem. 2001 , 113 , 3284
11
Rudolph J.
Rasmussen T.
Bolm C.
Norrby P.-O.
Angew. Chem. Int. Ed.
2003,
42:
3002 ; Angew. Chem. 2003 , 115 , 3110
12
Bolm C.
Hermanns N.
Hildebrand JP.
Muñiz K.
Angew. Chem. Int. Ed.
2000,
39:
3465 ; Angew. Chem. 2000 , 112 , 3607
13
Bolm C.
Schlingloff G.
Harms K.
Chem. Ber.
1992,
125:
1191
14
Bringmann G.
Breuning M.
Tetrahedron: Asymmetry
1998,
9:
667
15
Cho BT.
Chun YS.
Tetrahedron: Asymmetry
1998,
9:
1489
16
Hulst R.
Heres H.
Fitzpatrick K.
Peper NCMW.
Kellogg RM.
Tetrahedron: Asymmetry
1996,
9:
2755
17
Fitzpatrick K.
Hulst R.
Kellogg RM.
Tetrahedron: Asymmetry
1995,
6:
1861
18
Hof RP.
Poelert MA.
Peper NCMW.
Kellogg RM.
Tetrahedron: Asymmetry
1994,
5:
31
19
Rijnberg E.
Hovestad NJ.
Kleij AW.
Jastrzebski JTBH.
Boersma J.
Janssen MD.
Spek AL.
van Kroten G.
Organometallics
1997,
16:
2847
20
Rijnberg E.
Jastrzebski JTBH.
Janssen MD.
Boersma J.
van Koten G.
Tetrahedron Lett.
1994,
35:
6521
21
Kang J.
Lee JW.
Kim JI.
J. Chem. Soc., Chem. Commun.
1994,
2009
22
Kang J.
Kim DS.
Kim JI.
Synlett
1994,
842
23
Gibson CL.
Tetrahedron: Asymmetry
1999,
10:
1551
24
Fulton DA.
Gibson CL.
Tetrahedron Lett.
1997,
38:
2019
25
Gibson CL.
Chem. Commun.
1996,
645
26
Anderson JC.
Cubbon R.
Harding M.
James DS.
Tetrahedron: Asymmetry
1998,
9:
3461
27
Anderson JC.
Harding M.
Chem. Commun.
1998,
393
28
Kossenjans M.
Pennemann H.
Martens J.
Juanes O.
Rodrigues-Ubis JC.
Brunet E.
Tetrahedron: Asymmetry
1998,
9:
4123
29
Kossenjans M.
Soeberdt M.
Wallbaum S.
Harms K.
Martens J.
Aurich HG.
J. Chem. Soc., Perkin Trans. 1
1999,
2353
30
Juanes O.
Rodriguez-Ubis JC.
Brunet E.
Pennemann H.
Kossejans M.
Martens J.
Eur. J. Org. Chem.
1999,
3323
31
Kossejans M.
Martens J.
Tetrahedron: Asymmetry
1998,
9:
1409
32
Trentmann W.
Mehler T.
Martens J.
Tetrahedron: Asymmetry
1997,
12:
2033
33
Cho BT.
Chun YS.
Synth. Commun.
1999,
29:
521
34
Huang HL.
Lin YC.
Chen SF.
Wang CLJ.
Liu LT.
Tetrahedron: Asymmetry
1996,
7:
3067
35
Nakano H.
Kumagai N.
Matsuzaki H.
Kabuto C.
Hongo H.
Tetrahedron: Asymmetry
1997,
8:
1391
36
Braga AL.
Appelt HR.
Schneider PH.
Silveira CC.
Wessjohann LA.
Tetrahedron: Asymmetry
1999,
10:
1733
37
Braga AL.
Appelt HR.
Schneider PH.
Rodrigues OED.
Silveira CC.
Wessjohann LA.
Tetrahedron
2001,
57:
3291
38
Braga AL.
Appelt HR.
Silveira CC.
Wessjohann LA.
Schneider PH.
Tetrahedron
2002,
58:
10413
39a
Braga AL.
Silva S.
Lüdtke DS.
Drekener R.
Silveira CC.
Rocha JB.
Wessjohann LA.
Tetrahedron Lett.
2002,
43:
7329
39b
Braga AL.
Paixão MV.
Lüdtke DS.
Silveira CC.
Rodrigues OED.
Org. Lett.
2003,
5:
2635
40
Schrekker HS.
Schneider PH.
Wessjohann LA.
Silveira CC.
Braga AL.
Eur. J. Org. Chem.
2004,
2715
41
Braga AL.
Rubim RM.
Schrekker HS.
Wessjohann LA.
de Bolster MWG.
Zeni G.
Sehnem JA.
Tetrahedron: Asymmetry
2003,
14:
3291
42
Gelinsky M.
Vogler R.
Vahrenkamp H.
Inorg. Chim. Acta
2003,
334:
230
43
Gockel P.
Vogler R.
Gelinsky M.
Meißner A.
Albrich H.
Vahrenkamp H.
Inorg. Chim. Acta
2001,
323:
16
44a
Confalone PN.
Pizzolato G.
Baggiolini EG.
Lollar D.
Uskoković MR.
J. Am. Chem. Soc.
1977,
99:
7020
44b
McKennon MJ.
Meyers AI.
J. Org. Chem.
1993,
58:
3568
45
Casey M.
Smith MP.
Synlett
2003,
102
46 We thank a referee for pointing out the likely possibility of a transition state with 6-membered S/O-zinc-coordination to ligand 2 . This explanation is based on the importance of a free sulfide site and its strength for primary binding. Would thioether-binding be sufficiently stable as sole first coordination point, ligands 5 and 6 should give stereoinduction with opposing signs of rotation. This was not observed.
47
Soai K.
Ookawa A.
Ogawa K.
Kaba T.
J. Chem. Soc., Chem. Commun.
1987,
467
48
Eilers J.
Wilken J.
Tetrahedron: Asymmetry
1996,
7:
2343
49
Masdeu-Bulstó AM.
Diégues M.
Martin E.
Gómez M.
Coord. Chem. Rev.
2003,
242:
159