Subscribe to RSS
DOI: 10.1055/s-2005-861801
A New Cysteine-Derived Ligand as Catalyst for the Addition of Diethylzinc to Aldehydes: The Importance of a ‘Free’ Sulfide Site for Enantioselectivity
Publication History
Publication Date:
09 February 2005 (online)
Abstract
New chiral sulfides and disulfides were synthesized from readily available and inexpensive cysteine by straightforward methods in order to elucidate the relative importance of the various donor atoms (N, O, S) available in free or alkylated form resulting in covalent or dative bonds to the metal, respectively. Their application in the addition of diethylzinc to aldehydes provides secondary alcohols with up to 99% ee, and S-configuration, when catalytic amounts of disulfide ligands with the ability to form an S-Zn bond were used. In contrast to this, benzyl alcohols with the opposite absolute configuration R could be achieved, albeit with decreased yield and enantioselectivity, by the use of alkylated sulfide ligands.
Key words
cysteine - disulfide - chiral ligands - dialkylzinc - asymmetric synthesis
- 1
Gawley RE.Aube J. Principles of Asymmetric Synthesis Pergamon; London: 1996. - 2
Seyden-Penne J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis Wiley; New York: 1995. - 3
Noyori R. Asymmetric Catalysis in Organic Synthesis Wiley; New York: 1994. - 4
Noyori R.Kitamura M. Angew. Chem., Int. Ed. Engl. 1991, 30: 49 ; Angew. Chem. 1991, 103, 34 - 5
Kitamura M.Okada S.Suga S.Noyori R. J. Am. Chem. Soc. 1989, 111: 4028 - 6
Yamakawa M.Noyori R. J. Am. Chem. Soc. 1995, 117: 6327 - 7
Kitamura M.Suga S.Oka H.Noyori R. J. Am. Chem. Soc. 1998, 120: 9800 - 8
Kitamura M.Yamakawa M.Oka H.Suga S.Noyori R. Chem.-Eur. J. 1996, 2: 1173 - 9
Kitamura M.Oka H.Noyori R. Tetrahedron 1999, 55: 3605 - 10
Bolm C.Hildebrand JP.Muniz K.Hermanns N. Angew. Chem. Int. Ed. 2001, 40: 3284 ; Angew. Chem. 2001, 113, 3284 - 11
Rudolph J.Rasmussen T.Bolm C.Norrby P.-O. Angew. Chem. Int. Ed. 2003, 42: 3002 ; Angew. Chem. 2003, 115, 3110 - 12
Bolm C.Hermanns N.Hildebrand JP.Muñiz K. Angew. Chem. Int. Ed. 2000, 39: 3465 ; Angew. Chem. 2000, 112, 3607 - 13
Bolm C.Schlingloff G.Harms K. Chem. Ber. 1992, 125: 1191 - 14
Bringmann G.Breuning M. Tetrahedron: Asymmetry 1998, 9: 667 - 15
Cho BT.Chun YS. Tetrahedron: Asymmetry 1998, 9: 1489 - 16
Hulst R.Heres H.Fitzpatrick K.Peper NCMW.Kellogg RM. Tetrahedron: Asymmetry 1996, 9: 2755 - 17
Fitzpatrick K.Hulst R.Kellogg RM. Tetrahedron: Asymmetry 1995, 6: 1861 - 18
Hof RP.Poelert MA.Peper NCMW.Kellogg RM. Tetrahedron: Asymmetry 1994, 5: 31 - 19
Rijnberg E.Hovestad NJ.Kleij AW.Jastrzebski JTBH.Boersma J.Janssen MD.Spek AL.van Kroten G. Organometallics 1997, 16: 2847 - 20
Rijnberg E.Jastrzebski JTBH.Janssen MD.Boersma J.van Koten G. Tetrahedron Lett. 1994, 35: 6521 - 21
Kang J.Lee JW.Kim JI. J. Chem. Soc., Chem. Commun. 1994, 2009 - 22
Kang J.Kim DS.Kim JI. Synlett 1994, 842 - 23
Gibson CL. Tetrahedron: Asymmetry 1999, 10: 1551 - 24
Fulton DA.Gibson CL. Tetrahedron Lett. 1997, 38: 2019 - 25
Gibson CL. Chem. Commun. 1996, 645 - 26
Anderson JC.Cubbon R.Harding M.James DS. Tetrahedron: Asymmetry 1998, 9: 3461 - 27
Anderson JC.Harding M. Chem. Commun. 1998, 393 - 28
Kossenjans M.Pennemann H.Martens J.Juanes O.Rodrigues-Ubis JC.Brunet E. Tetrahedron: Asymmetry 1998, 9: 4123 - 29
Kossenjans M.Soeberdt M.Wallbaum S.Harms K.Martens J.Aurich HG. J. Chem. Soc., Perkin Trans. 1 1999, 2353 - 30
Juanes O.Rodriguez-Ubis JC.Brunet E.Pennemann H.Kossejans M.Martens J. Eur. J. Org. Chem. 1999, 3323 - 31
Kossejans M.Martens J. Tetrahedron: Asymmetry 1998, 9: 1409 - 32
Trentmann W.Mehler T.Martens J. Tetrahedron: Asymmetry 1997, 12: 2033 - 33
Cho BT.Chun YS. Synth. Commun. 1999, 29: 521 - 34
Huang HL.Lin YC.Chen SF.Wang CLJ.Liu LT. Tetrahedron: Asymmetry 1996, 7: 3067 - 35
Nakano H.Kumagai N.Matsuzaki H.Kabuto C.Hongo H. Tetrahedron: Asymmetry 1997, 8: 1391 - 36
Braga AL.Appelt HR.Schneider PH.Silveira CC.Wessjohann LA. Tetrahedron: Asymmetry 1999, 10: 1733 - 37
Braga AL.Appelt HR.Schneider PH.Rodrigues OED.Silveira CC.Wessjohann LA. Tetrahedron 2001, 57: 3291 - 38
Braga AL.Appelt HR.Silveira CC.Wessjohann LA.Schneider PH. Tetrahedron 2002, 58: 10413 -
39a
Braga AL.Silva S.Lüdtke DS.Drekener R.Silveira CC.Rocha JB.Wessjohann LA. Tetrahedron Lett. 2002, 43: 7329 -
39b
Braga AL.Paixão MV.Lüdtke DS.Silveira CC.Rodrigues OED. Org. Lett. 2003, 5: 2635 - 40
Schrekker HS.Schneider PH.Wessjohann LA.Silveira CC.Braga AL. Eur. J. Org. Chem. 2004, 2715 - 41
Braga AL.Rubim RM.Schrekker HS.Wessjohann LA.de Bolster MWG.Zeni G.Sehnem JA. Tetrahedron: Asymmetry 2003, 14: 3291 - 42
Gelinsky M.Vogler R.Vahrenkamp H. Inorg. Chim. Acta 2003, 334: 230 - 43
Gockel P.Vogler R.Gelinsky M.Meißner A.Albrich H.Vahrenkamp H. Inorg. Chim. Acta 2001, 323: 16 -
44a
Confalone PN.Pizzolato G.Baggiolini EG.Lollar D.Uskoković MR. J. Am. Chem. Soc. 1977, 99: 7020 -
44b
McKennon MJ.Meyers AI. J. Org. Chem. 1993, 58: 3568 - 45
Casey M.Smith MP. Synlett 2003, 102 - 47
Soai K.Ookawa A.Ogawa K.Kaba T. J. Chem. Soc., Chem. Commun. 1987, 467 - 48
Eilers J.Wilken J. Tetrahedron: Asymmetry 1996, 7: 2343 - 49
Masdeu-Bulstó AM.Diégues M.Martin E.Gómez M. Coord. Chem. Rev. 2003, 242: 159
References
We thank a referee for pointing out the likely possibility of a transition state with 6-membered S/O-zinc-coordination to ligand 2. This explanation is based on the importance of a free sulfide site and its strength for primary binding. Would thioether-binding be sufficiently stable as sole first coordination point, ligands 5 and 6 should give stereoinduction with opposing signs of rotation. This was not observed.