References
1a
Class YJ.
DeShong P.
Chem. Rev.
1995,
95:
1843
1b
Norcross RD.
Paterson I.
Chem. Rev.
1995,
95:
2041
1c
Marko IE.
Bayston DJ.
Synthesis
1996,
297
2a
Hanschke E.
Chem. Ber.
1955,
88:
1053
2b
Stapp PR.
J. Org. Chem.
1969,
34:
479
3a
Arundale E.
Mikeska LA.
Chem. Rev.
1952,
52:
505
3b
Adams DR.
Bhatnagar SP.
Synthesis
1977,
661
3c
Snider BB. In The Prins Reaction and Carbonyl Ene Reactions
Vol. 2:
Trost BM.
Fleming I.
Heathcock CH.
Pergamon Press;
New York:
1991.
p.527-561
For recent work on the Prins cyclization, see:
4a
Liu J.
Hsung RP.
Peters SD.
Org. Lett.
2004,
6:
3989
4b
Overman LE.
Velthuisen EJ.
Org Lett.
2004,
6:
3853
4c
Hart DJ.
Bennet CE.
Org. Lett.
2003,
5:
1499
4d
Barry CSJ.
Crosby SR.
Harding JR.
Hughes RA.
King CD.
Parker GD.
Willis CL.
Org. Lett.
2003,
5:
2429
4e
Miranda PO.
Diaz DD.
Padron JI.
Bermejo J.
Martin VS.
Org. Lett.
2003,
5:
1979
4f
Lopez F.
Castedo L.
Mascarenas JL.
J. Am. Chem. Soc.
2002,
124:
4218
4g
Crosby SR.
Harding JR.
King CD.
Parker GD.
Willis CL.
Org. Lett.
2002,
4:
3407
4h
Crosby SR.
Harding JR.
King CD.
Parker GD.
Willis CL.
Org. Lett.
2002,
4:
577
4i
Cho YS.
Kim HY.
Cha JH.
Pae AN.
Koh HY.
Choi JH.
Chang MH.
Org. Lett.
2002,
4:
2025
4j
Yang XF.
Mague JT.
Li CJ.
J. Org. Chem.
2001,
66:
739
5
Alder RW.
Harvey JN.
Oakley MT.
J. Am. Chem. Soc.
2002,
124:
4960
6
Jasti R.
Vitale J.
Rychnovsky SD.
J. Am. Chem. Soc.
2004,
126:
9904
7a
de Souza ROMA.
Meireles BA.
Sequeira LS.
Vasconcellos MLAA.
Synthesis
2004,
1595
7b
Miranda LSM.
Vasconcellos MLAA.
Synthesis
2004,
1767
8
Miranda LSM.
Marinho BG.
Leitão SG.
Matheus EM.
Fernandes PD.
Vasconcellos MLAA.
Bioorg. Med. Chem. Lett.
2004,
14:
1573
9
Dalcanalc E.
Montanari FJ.
J. Org. Chem.
1986,
51:
567
10a
Paquette LA.
Mitzel TM.
J. Am. Chem. Soc.
1996,
118:
1931
10b
Wang ZY.
Pan CF.
Zhang ZH.
Sun GJ.
Org. Lett.
2004,
6:
3059
11a
Jurckak J.
Pikul S.
Bauer T.
Tetrahedron
1986,
42:
447
11b For some recent examples see ref.10b
11c See also: Wroblewski AE.
Halajewska-Wosik A.
Tetrahedron: Asymmetry
2004,
15:
2075
11d
Thijs L.
Zwanenburg B.
Tetrahedron
2004,
60:
5237
11e
Matsuya Y.
Itoh T.
Nemoto H.
Eur. J. Org. Chem.
2003,
12:
2221
11f
Boyer SH.
Ugarkar BG.
Erion MD.
Tetrahedron Lett.
2003,
44:
4109
12a The diastereoisomeric purity of 5 was determined through 13C NMR spectroscopy (ref.9), and its enantiomeric purity through comparison of its optical rotation with literature reference data: [α]D 15.0 (92% de and 87% ee). See: Roush WH.
Walts AE.
Hoong LK.
J. Am. Chem. Soc.
1985,
107:
8186
12b Spectroscopical data of anti-5: 1H NMR (200 MHz, CDCl3): δ = 5.92-5.75 (m, 1 H), 5.20 (m, 1 H), 5.10 (m, 1 H), 4.05-3.87 (m, 3 H), 3.77 (dq, J = 8.8, 4.4 Hz, 1 H), 2.43-2.10 (m, 2 H), 2.00 (d, J = 3.4 Hz, 1 H), 1.43 (s, 3 H), 1.37 (s, 3 H). 13C NMR (50 MHz, CDCl3): δ = 133.8, 118.1, 108.9, 77.9, 70.2, 65.0, 37.4, 26.3, 25.0. MS (70 eV): m/z (%) = 59 (100), 73 (35), 101 (72), 114 (2.5), 131 (7), 157 (45). IR (KBr, neat): 3444, 3078, 2987, 2936, 2899, 1642, 1456, 1435, 1381, 1254, 1215, 1066, 917, 854 cm-1.
13
Experimental Procedure for Diastereoisomeric Enrichment of
anti
-5.
To a stirred solution of the diastereoisomeric mixture of 5 (3.0 g, 17.4 mmol) in 45 mL of dry acetone, under Ar atmosphere, is added in one portion 0.2 g of p-TSA (1.04 mmol). The reaction is left stirring at -15 °C for 48 h, then the solvent is evaporated under reduced pressure and the residue submitted to flash column chromatography yielding 1.6 g (71%) of diastereoisomeric enriched 5 (92% de).
14 To a stirred solution of 5 (0.5 g, 2.9 mmol) in dry CH2Cl2 (5 mL), under an Ar atmosphere, is added propanal (0.5 mL, 6 mmol). The reaction mixture is cooled in an ice bath and then a solution of SnBr4 (1.25 g in 3 mL of dry CH2Cl2) is slowly added. The reaction is monitored through TLC and then quenched with 4 mL of a sat. solution of NaHCO3 followed by 5 mL of EtOAc. The mixture is left stirring for more 40 min. The aqueous phase is then extracted with EtOAc (3 × 5 mL). The combined organic phases are dried with anhyd NaSO4 and then concentrated. The crude product is filtered through silica (eluted with 20% EtOAc-hexanes) furnishing 0.55 g of 8 as a mixture of four diastereomers.
15 Spectroscopical data of 9: [α]D -5.5 (c 2.9, CHCl3). 1H NMR (200 MHz, CDCl3): δ = 3.8 (m, 2 H), 3.6 (m, 1 H), 3.4 (dq, 1 H, J = 11.09, 5.12, 1.83 Hz), 3.20 (m, 2 H), 2.40 (br s, 1 H), 1.90 (m, 1 H), 1.20-1.70 (m, 7 H), 0.90 (t, 3 H, J = 7.33 Hz). 13C NMR (50 MHz, CDCl3): δ = 79.9, 79.5, 73.5, 63.7, 30.9, 29.1, 27.2, 23.0, 9.7. MS (70 eV): m/z (%) = 143 (9), 131 (4), 113 (57), 95 (98), 69 (61), 55 (100). IR (KBr, neat): 3390, 2934, 2856, 1460, 1441, 1085, 1045 cm-1.
16 Spectroscopical data of 2 [α]D -45.2 (c 0.53, CHCl3, 87% ee). 1H NMR (200 MHz, CDCl3): δ = 4.0 (dd, 1 H, J = 9.1, 2.7 Hz), 3.4 (m, 1 H), 2.40 (m, 1 H), 2.00 (m, 2 H), 1.00-1.80 (m, 6 H), 0.99 (t, 3 H, J = 7.2 Hz). 13C NMR (50 MHz, CDCl3): δ = 147.3, 79.5 75.8, 29.9, 28.7, 28.3, 23.0, 9.6. MS (70 eV): m/z (%) = 129 (10), 113 (77), 101 (33), 95 (100). IR (KBr, neat): 3412, 2961, 2938, 2877, 2861, 1732, 1651, 1441, 1383, 1203, 1105, 918 cm-1.