References
1a
Yun J.
Buchwald SL.
J. Org. Chem.
2000,
65:
767
1b
Morken JP.
Didiuk MT.
Visser MS.
Hoveyda AH.
J. Am. Chem. Soc.
1994,
116:
3123
1c
Reding MT.
Buchwald SL.
J. Org. Chem.
1998,
63:
6344
1d
Halterman RL.
Chem. Rev.
1992,
92:
965
1e
Waymouth R.
Pino P.
J. Am. Chem. Soc.
1990,
112:
4911
1f
Willoughby CA.
Buchwald SL.
J. Am. Chem. Soc.
1994,
116:
11703
1g
Melillo G.
Izzo L.
Zinna M.
Tedesco C.
Oliva L.
Macromolecules
2002,
35:
9256
1h
Zambelli A.
Longo P.
Grassi A.
Macromolecules
1989,
22:
2189
1i
Gansauer A.
Moschioni M.
Bauer D.
Eur. J. Org. Chem.
1998,
1923
2a
Chiral Catalyst Immobilization and Recycling
De Vos DE.
Vankelecom IFJ.
Jacobs PA.
Wiley;
Weinheim:
2000.
2b
Haag MC.
Dupont J.
Stedile FC.
dos Santos JHZ.
J. Mol. Catal. A: Chem.
2003,
197:
223
2c
Marques MFV.
Pombo CC.
Silva RA.
Conte A.
Eur. Polym. J.
2003,
39:
561
2d
Herrmann WA.
Cornils B.
Appl. Homogen. Catal. Organomet. Compd.
1996,
2:
1167
2e
Pomogailo AD.
Kinet. Catal.
2004,
45:
61
2f
Abbenhuis HCL.
Angew. Chem. Int. Ed.
1999,
38:
1058
2g
Carnahan EM.
Jacobsen GB.
CATTECH
2000,
4:
74
3a
McMorn P.
Hutchings GJ.
Chem. Soc. Rev.
2004,
33:
108
3b
Valkenberg MH.
Holdenich WF.
Catal. Rev.
2002,
44 (2):
321
4a
Huttenloch ME.
Dorer B.
Riet U.
Prosenc M.-H.
Schmidt K.
Brintzinger HH.
J. Organomet. Chem.
1997,
541:
219
4b
Metallocene-Based Polyolefins
Scheirs J.
Kaminsky W.
Wiley;
Chichester:
2000.
4c
Organometallic Catalyst and Olefin Polymerization
Blom R.
Follestad A.
Rytter E.
Tilsel M.
Ystenes M.
Springer;
Berlin:
2001.
4d
Spaleck W.
Aulbach M.
Bachmann B.
Kueber F.
Winter A.
Macromol. Symp.
1995,
89:
237
4e
Resconi L.
Cavallo L.
Fait A.
Piemontesi F.
Chem. Rev.
2000,
100:
1253
4f
Kaminsky W.
J. Polym. Sci., Part A: Polym. Chem.
2004,
42:
3911
4g
Kaminsky W.
Laban A.
Appl. Catal. A: General
2001,
222:
47
4h
Busico V.
Cipullo R.
Prog. Polym. Sci.
2001,
26:
443
4i
Imuta J.-I.
Tsutsui T.
Yoshitugu K.
Matsugi T.
Kashiwa N.
Organomet. Catal. Olefin Polym.
2001,
427
4j Buchwald SL, and Grossman RB. inventors; US Patent 5004820.
5
Panarello A.
Khinast JG.
Tetrahedron Lett.
2003,
44:
4095
6 Panarello, A.; Vassylyev, O.; Khinast, J. G. Tetrahedron Lett. 2005, accepted for publication.
7 Sandoval JE, and Pesek JJ. inventors; US Patent 5017540.
8 Collins S., Bradly A., Taylor N. J., Ward D. G.; J. Organomet. Chem.; 1988, 342: 21
9 Ethylene oxide (2 mol equiv) passed through a solution of 2 (1 mol equiv) in THF at -78 °C for 2 h. Then the reaction mixture was kept at stirring for 1.5 h at 0 °C and allowed to gradually warming to r.t. overnight, quenched by aq NH4Cl and extracted by Et2O. Organic phase was washed with H2O, dried over MgSO4 and purified by column chromatography with hexane-Et2O mixture (5:2).
10a
Chanh H.
Derguini-Boumechal F.
Linstrumelle G.
Tetrahedron Lett.
1979,
17:
1503
10b
Fujisawa T.
Sato T.
Kawara T.
Ohashi K.
Tetrahedron Lett.
1981,
22:
4823
11
General Procedure for Iodination.
Hydroxy-compound was dissolved in a mixture Et2O-MeCN (4:1) together with PPh3 (1.1 mol equiv), imidazole (2 mol equiv) and I2 (2 mol equiv). After 20 min of stirring at r.t., the reaction mixture was diluted by Et2O, filtered, liquid phase washed by aq NaHCO3 and brine, dried over MgSO4 and concentrated. The product was purified by column chromatography using hexane as eluent.
12 6-Bromo-indene was quantatively prepared by reducing 6-bromo-indanone using lithium aluminum hydride (LiAlH4) in Et2O and then reacting with p-toluenesulfonic acid (p-TsOH) in benzene. See: Polo E.
Bellabarba RM.
Prini G.
Traverso O.
G reen MLH.
J. Organomet. Chem.
1999,
577:
211
13
General Procedure for Preparation of bis-Indenyl Compounds.
Iodide compound (1.05 mol equiv) in THF-hexanes was added dropwise to the solution of 2 (1 mol equiv) in THF at -78 °C during 25 min, and allowed to warm to r.t. overnight. Then the reaction mixture was treated similar to 3.
14
The Suzuki Coupling Reaction Using Pd(PPh
3
)
4
.
In an oven-dried reaction flask equipped with a reflux head and a stir bar, Pd(PPh3)4 (1 mol%), arylboronic acid 13 (0.32 mmol, 1.3 mol equiv) and 12 (0.25 mmol, 1 mol equiv) were charged to a solution of DMM (4 mL). The mixture was allowed to stir at r.t. while aq K2CO3 (2.0 M, 3.3 mol equiv) was added. The reaction was then placed in an oil bath and refluxed for 6 h. The reaction was quenched at r.t. by adding H2O (25 mL) and CH2Cl2 (25 mL). A liquid-liquid extraction was performed, where the organic phase was collected and dried over MgSO4. The reaction mixture was then purified by silica gel chromatography to afford the desired coupling product.
15 Solution of 2 (1.05 mol equiv) in THF was added dropwise to the solution of 9 (1 mol equiv) and catalytic amount of Cu2I2 in THF at 0 °C. Further treatment was similar to 3.
16 Isomers were characterized by the presence of the cyclopentadienyl peaks in the 1H NMR spectra. A decrease in the doublet intensity (δ = 6.25-6.15 ppm) is replaced by the alkene isomer peaks that show up as double doublets at δ = 7.00-6.95 and 6.70-6.55 ppm. In addition, a shift in the alkene peak was also observed; from δ = 5.90-5.80 to 5.65-5.75 ppm.
17 Analytical data for novel compounds. Data are reported for compound purity greater than 95% (trace solvent or moisture).
3-(2′-Hydroxyethyl)-1
H
-indene
(
3): 1H NMR (CDCl3): δ = 7.50 (d, 1 H, J = 7 Hz), 7.40 (d, 1 H, J = 7 Hz), 7.35-7.30 (t, 1 H, J = 7 Hz), 7.30-7.25 (dt, 1 H, J = 7 Hz, 7 Hz), 6.35 (s, 1 H), 4.00-3.90 (br s, 2 H), 3.40 (s, 2 H), 2.90-2.85 (qt, 2 H, J = 2, 7 Hz), 2.10-2.00 (br s, 1 H). 13C NMR (CDCl3): δ = 145.0, 144.4, 140.8, 129.9, 126.1, 124.8, 123.9, 119.0, 61.1, 37.9, 31.2. MS: m/z = 160 [M]+, 143 [Ind - (CH2)2]+, 129 [Ind - CH2]+.
3-(2′-Iodoethyl)-1
H
-indene
(4): 1H NMR (CDCl3): δ = 7.60 (d, 1 H, J = 7 Hz), 7.45 (d, 2 H, J = 4 Hz), 7.40-7.35 (m, 1 H), 6.40 (s, 1 H), 3.60-3.55 (t, 2 H, J = 8 Hz), 3.45 (s, 2 H), 3.25-2.20 (t, 2 H, J = 8 Hz). 13C NMR (CDCl3): δ = 144.3, 143.1, 129.5, 126.3, 125.1, 124.1, 118.8, 38.1, 32.8, 3.1. Due to the instability of the compound, IR or MS could not be obtained. 13C NMR was only obtained after using a very high concentration 50 mg/mL and a small number of scans.
3-[2′-(1
H
-Inden-3′′-yl)-ethyl]-5-bromo-1
H
-indene (6): 1H NMR (CDCl3): δ = 7.50-7.47 (d, 1 H, J = 9 Hz), 7.45-7.40 (dd, 2 H, J = 8, 8 Hz), 7.35 (s, 2 H), 7.25 (d, 2 H, J = 7 Hz), 6.29 (s, 2 H), 3.36 (s, 2 H), 3.34-3.30 (d, 2 H, J = 10 Hz), 2.95 (s, 4 H). 13C NMR (CDCl3): δ = 147.7, 146.6, 145.3, 144.5, 143.9, 143.7, 143.6, 143.2, 129.7, 129.1, 128.4, 128.1, 127.3, 127.1, 126.1, 125.1, 124.7, 123.9, 122.2, 120.3, 120.1, 118.9, 118.8, 37.8, 37.7, 37.5, 26.2, 26.1. IR (NaBr): 3063, 2902, 1599, 1563, 1459, 1396, 1273, 1245, 1230, 1202, 1168, 1121, 1059, 1014, 967, 917, 863 (C=C), 809 (C=C), 773 (C=C), 719 (C=C) cm-1. Anal. Calcd for C20H17Br: m/z (%) = C, 71.2; H, 5.08. Found: C, 69.32; H, 5.07.
3-[2′-(1
H
-Inden-3′′-yl)ethyl]-5-(4′′′-vinylphenyl)-1
H
-indene (8): mp 104 °C(hexane).1H NMR (CDCl3): δ = 7.75 (s, 1 H), 7.60 (d, 2 H, J = 8 Hz), 7.59 (dd, 1 H, J = 8, 8 Hz), 7.52-7.42 (m, 5 H), 7.35 (t, 1 H, J = 7, 7 Hz), 7.25 (t, 1 H, J = 7 Hz), 6.85-6.75 (q, 1 H, J = 18 Hz), 6.35 (s, 1 H), 6.33 (s, 1 H), 5.85-5.78 (d, 1 H, J = 18 Hz), 5.32-5.25 (d, 1 H, J = 11 Hz), 3.45 (s, 2 H), 3.38 (s, 2 H), 2.90 (s, 4 H). 13C NMR (CDCl3): δ = 197.9, 145.3, 144.8, 144.5, 144.1, 144, 137.3, 136.5, 136.2, 128.5, 128.0, 127.4, 127.2, 126.6, 126, 125.1, 124.6, 123.8, 122.5, 119.1, 118.9, 113.6, 37.9, 37.8, 26.3. IR (NaBr): 3049, 2920, 1715, 1603 (C=C), 1460, 1396, 1265, 1167, 1060, 914, 821, 770, 736 cm-1. MS: m/z = 359 [M - 1]+, 333 [Ind - (CH2)2 - Ind - C6H4]+, 218 [Ind - C6H4 - CH=CH2]+.
3-(2′-Hydroxyhexen-5′-yl)-1
H
-indene (11): 1H NMR (CDCl3): δ = 7.55 (d, 1 H, J = 7 Hz), 7.45 (d, 1 H, J = 7 Hz), 7.31 (t, 1 H, J = 8 Hz), 7.24 (t, 1 H, J = 8 Hz), 6.40 (s, 1 H), 5.95-5.85 (dq, 1 H, J = 5 Hz), 5.20-5.00 (dd, 2 H, J = 17, 10 Hz), 4.00 (br s, 1 H), 3.45-3.35 (s, 2 H), 2.90-2.85 (d, 1 H, J = 12 Hz), 2.80-2.75 (dd, 1 H, J = 16, 8 Hz), 2.40-2.20 (m, 2 H), 1.90-1.80 (s, 1 H), 1.80-1.75 (t, 2 H, J = 8 Hz). 13C NMR (CDCl3): δ = 145.0, 144.5, 141.1, 138.5, 130.8, 126.1, 124.8, 123.9, 119.2, 114.9, 69.5, 37.9, 36.3, 36.2, 30.2. MS: m/z = 214 [M]+, 197 [Ind - CH(CH2)2 - (CH2)2 - CH=CH2]+, 184 [Ind - CH(CH2)2 - (CH2)2 - CH2]+.
3-(2′-Iodohexen-5′-yl)-1
H
-indene (12): 1H NMR (CDCl3): δ = 7.60 (d, 1 H, J = 7 Hz), 7.45-7.40 (m, 2 H), 7.40-7.35 (m, 1 H), 6.45 (s, 1 H), 5.95-5.85 (dq, 1 H, J = 7 Hz), 5.25-5.10 (dd, 2 H, J = 15, 8 Hz), 4.65 (m, 1 H), 3.50-3.30 (m, 3 H), 3.35-3.25 (m, 1 H), 2.60-2.50 (m, 1 H), 2.40-2.30 (m, 1 H), 2.15-1.95 (dm, 2 H). 13C NMR (CDCl3): δ = 144.7, 144.4, 142.3, 136.9, 130.8, 126.2, 125.0, 124.1, 118.9, 115.9, 40.2, 39.2, 38.1, 34.6, 34.0. IR: 3076, 3011, 2974, 2904, 2847, 2774, 1642, 1601, 1462, 1429, 1388, 1303, 1245, 1151, 996, 963, 923, 771, 747, 722, 694 cm-1. MS: m/z = 324 [M]+, 197 [Ind - CH(CH2)C4H7]+.
1,2-Bis(1H-inden-3′-yl)-hexene-5 (13): 1H NMR (CDCl3): δ = 7.50-7.47 (d, 1 H, J = 8 Hz), 7.46-7.44. (d, 2 H, J = 8 Hz) 7.40-7.35 (d, 1 H, J = 7 Hz), 7.35-7.25 (t, 2 H, J = 7 Hz), 7.25-7.15 (dd, 2 H, J = 8 Hz, 8 Hz), 6.28-6.25 (s, 1 H), 6.20-6.15 (s, 1 H), 5.80-5.75 (dq, 1 H, J = 6 Hz), 4.95-4.85 (dd, 2 H, J = 17, 10 Hz), 3.35-3.32 (s, 2 H) 3.30-3.27 (s, 1 H), 3.25-3.20 (t, 1 H, J = 7 Hz), 3.05-2.95 (m, 1 H), 2.95-2.85 (dd, 1 H, J = 8, 7 Hz), 2.15-2.05 (m, 1 H), 2.10-2.00 (m, 1 H), 1.90-1.85 (q, 2 H, J = 7 Hz). 13C NMR (CDCl3): δ = 147.6, 145.7, 145.1, 144.8, 144.4, 142.6, 138.8, 129.3, 127.9, 125.9, 125.8, 124.4, 124.4, 123.8, 123.7, 119.4, 118.9, 114.4, 37.8, 37.7, 36.3, 33.1, 32.8, 31.5. IR: 3068, 3007, 2974, 2917, 2851, 2765, 1642, 1605, 1458, 1388, 1021, 992, 972, 910, 771, 718 cm-1. MS: m/z = 311 [M]+.