References
<A NAME="RG47404ST-1">1</A>
These authors contributed equally to this work.
<A NAME="RG47404ST-2">2</A>
X-ray crystallography.
<A NAME="RG47404ST-3">3</A>
Bolm C.
Gladysz JA.
Chem. Rev.
2003,
103:
2761 ; Special Issue on Enantioselective Catalysis
<A NAME="RG47404ST-4A">4a</A> Isolation:
McGuire JM.
Bunch RL.
Anderson RC.
Boaz HE.
Flynn EH.
Powell HM.
Smith JW.
Antibiot. Chemother.
1952,
2:
281
<A NAME="RG47404ST-4B">4b</A> Structure (chemical degradation):
Wiley PF.
Gerzon K.
Flynn EH.
Sigal MV.
Weaver O.
Quarck UC.
Chauvette RR.
Monahan R.
J. Am. Chem. Soc.
1957,
79:
6062
<A NAME="RG47404ST-4C">4c</A> Structure (X-ray):
Harris DR.
McGeachin SG.
Mills HH.
Tetrahedron Lett.
1965,
6:
679
<A NAME="RG47404ST-5A">5a</A> Isolation:
Gunasekera SP.
Gunasekera M.
Longley RE.
Schulte GK.
J. Org. Chem.
1990,
55:
4912 ; correction J. Org. Chem.
1991, 56, 1346
<A NAME="RG47404ST-5B">5b</A> Synthesis:
Paterson I.
Florence GJ.
Eur. J. Org. Chem.
2003,
12:
2193
<A NAME="RG47404ST-6">6</A>
Davies-Coleman MT.
Garson MJ.
Nat. Prod. Rep.
1998,
15:
477
<A NAME="RG47404ST-7A">7a</A>
Houk KN.
List B.
Acc. Chem. Res.
2004,
37:
487 (Special Issue on Asymmetric Organocatalysis)
<A NAME="RG47404ST-7B">7b</A>
Adv. Synth. Catal.
2004,
346:
1007 (Special Issue: Organic Catalysis)
<A NAME="RG47404ST-7C">7c</A>
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138
<A NAME="RG47404ST-8A">8a</A>
Notz W.
List B.
J. Am. Chem. Soc.
2000,
122:
7386
<A NAME="RG47404ST-8B">8b</A>
List B.
Lerner RA.
Barbas CF.
J. Am. Chem. Soc.
2000,
122:
2395
<A NAME="RG47404ST-8C">8c</A>
List B.
Pojarliev P.
Castello C.
Org. Lett.
2001,
3:
573
<A NAME="RG47404ST-8D">8d</A>
List B.
Tetrahedron
2002,
58:
5573
<A NAME="RG47404ST-8E">8e</A>
List B.
Synlett
2001,
1675
<A NAME="RG47404ST-8F">8f</A>
Pidathala C.
Hoang L.
Vignola N.
List B.
Angew. Chem. Int. Ed.
2003,
42:
2785
<A NAME="RG47404ST-9A">9a</A>
Sakthivel K.
Notz W.
Bui T.
Barbas CF.
J. Am. Chem. Soc.
2001,
123:
5260
<A NAME="RG47404ST-9B">9b</A>
Córdova A.
Notz W.
Barbas CF.
J. Org. Chem.
2002,
67:
301
<A NAME="RG47404ST-9C">9c</A>
Chowdari NS.
Ramachary DB.
Córdova A.
Barbas CF.
Tetrahedron Lett.
2002,
43:
9591
<A NAME="RG47404ST-9D">9d</A>
Córdova A.
Notz W.
Barbas CF.
Chem. Commun.
2002,
1:
3024
<A NAME="RG47404ST-9E">9e</A>
Notz W.
Tanaka F.
Barbas CF.
Acc. Chem. Res.
2004,
37:
580
<A NAME="RG47404ST-9F">9f</A>
Thayumanavan R.
Tanaka F.
Barbas CF.
Org. Lett.
2004,
6:
3541
<A NAME="RG47404ST-10A">10a</A>
Northrup AB.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
6798
<A NAME="RG47404ST-10B">10b</A>
Northrup AB.
Mangion IK.
Hettche F.
MacMillan DWC.
Angew. Chem. Int. Ed.
2004,
43:
2152
<A NAME="RG47404ST-10C">10c</A>
Storer RI.
MacMillan DWC.
Tetrahedron
2004,
60:
7705
<A NAME="RG47404ST-10D">10d</A>
Northrup AB.
MacMillan DWC.
Science
2004,
305:
1752
<A NAME="RG47404ST-11A">11a</A>
Kumaragurubaran N.
Juhl K.
Zhuang W.
Bøgevig A.
Jørgensen KA.
J. Am. Chem. Soc.
2002,
124:
6254
<A NAME="RG47404ST-11B">11b</A>
Bøgevig A.
Kumaragurubaran N.
Jørgensen KA.
Chem. Commun.
2002,
6:
620
<A NAME="RG47404ST-11C">11c</A>
Bøgevig A.
Poulsen TB.
Zhuang W.
Jørgensen KA.
Synlett
2003,
1915
<A NAME="RG47404ST-11D">11d</A>
Halland N.
Aburel PS.
Jørgensen KA.
Angew. Chem. Int. Ed.
2004,
43:
1272
<A NAME="RG47404ST-11E">11e</A>
Gathergood N.
Juhl K.
Poulsen TB.
Thordrup K.
Jørgensen KA.
Org. Biomol. Chem.
2004,
2:
1077
<A NAME="RG47404ST-11F">11f</A>
Pulkkinen J.
Aburel PS.
Halland N.
Jørgensen KA.
Adv. Synth. Catal.
2004,
346:
1077
For recent examples, see:
<A NAME="RG47404ST-12A">12a</A>
Nyberg AI.
Usano A.
Pihko PM.
Synlett
2004,
1891
<A NAME="RG47404ST-12B">12b</A>
Casas J.
Sundén H.
Córdova A.
Tetrahedron Lett.
2004,
45:
6117
β-Hydroxyaldehydes are notorious for the facility by which they undergo oligomerization,
elimination and other decomposition reactions. For recent documented examples, see:
<A NAME="RG47404ST-13A">13a</A>
Chemler SR.
Roush WR.
J. Org. Chem.
2003,
68:
1319
<A NAME="RG47404ST-13B">13b</A>
Lautens M.
Stammers TA.
Synthesis
2002,
1993
<A NAME="RG47404ST-14">14</A>
Pihko PM.
Erkkilä A.
Tetrahedron Lett.
2003,
44:
7607
For recent reviews, see:
<A NAME="RG47404ST-15A">15a</A>
Russo DA.
Chem. Ind. N. Y.
1996,
64:
405
<A NAME="RG47404ST-15B">15b</A>
Li C.-J.
Tetrahedron
1996,
52:
5643
<A NAME="RG47404ST-15C">15c</A>
Paquette LA.
Green Chem.
1998,
250
<A NAME="RG47404ST-15D">15d</A>
Podlech J.
Maier TC.
Synthesis
2003,
633
<A NAME="RG47404ST-15E">15e</A>
Denmark SE.
Fu J.
Chem. Rev.
2003,
103:
2763
<A NAME="RG47404ST-16">16</A>
For the propionaldehyde dimerization-allylation sequence, the following procedure
is illustrative. To l-proline (5.8 mg, 0.05 mmol, 10 mol%) in DMF (0.5 mL), was added propionaldehyde (72
µL, 1.0 mmol, 200 mol%) at 0 °C. The reaction mixture was stirred 10 h at 4 °C. Then,
to the reaction mixture were added H2O (0.5 mL), indium (68.9 mg, 0.6 mmol, 120 mol%), and allyl bromide (52 µL, 0.6 mmol,
120 mol%). The reaction mixture was stirred for additional 3 h at r.t. The reaction
mixture was then extracted with EtOAc (2 × 3 mL). The combined organic layers were
dried over anhyd Na2SO4, concentrated in vacuo, and purified by flash chromatography (50% MTBE in hexanes)
to yield 57 mg (72%) of 1 as a mixture of diastereomers.
<A NAME="RG47404ST-17A">17a</A>
Paquette LA.
Mitzel TM.
J. Am. Chem. Soc.
1996,
118:
1931
<A NAME="RG47404ST-17B">17b</A> For an example of similar allylations of β-hydroxyaldehydes with allylboronic
acid, see:
Kabalka GW.
Narayana C.
Reddy NK.
Tetrahedron Lett.
1996,
37:
2181
<A NAME="RG47404ST-18">18</A>
In addition to indium, tin and zinc were also screened as metals for the allylation,
crotylation and prenylation reactions. Tin provided similar yields but lower selectivities
and zinc similar selectivities but poor yields.
The enantioselectivity was determined by GC analysis of the 5,5-dimethyl-1,3-dioxane
derivatives of 1 or 3 as described in ref.14 Conditions: Supelco γ-DEXTM 120 column (30 m × 0.25 mm, 0.25 µm film). The carrier has a velocity of 28
cm/s, FID detection (300 °C) (110 °C isotherm 45 min, then raised to 180 °C at a rate
of 2 °C/min);
<A NAME="RG47404ST-19A">19a</A>
for GC analysis of the dimer 1: (2S,3S)-anti-isomer t
R = 50.0 min, (2R,3R)-anti-isomer t
R = 52.3 min, (2R,3S)-syn-isomer t
R = 47.7 min, (2S,3R)-syn-isomer t
R = 48.1 min;
<A NAME="RG47404ST-19B">19b</A>
GC analysis of the cross aldol product 3: anti-isomer t
R = 55.1 min, anti-isomer t
R = 56.0 min, syn-isomer t
R = 54.2 min, syn-isomer t
R = 55.1 min.
<A NAME="RG47404ST-20">20</A>
Araki S.
Ito H.
Butsugan Y.
J. Org. Chem.
1988,
53:
1833
<A NAME="RG47404ST-21">21</A>
For the trans-4-hydroxyproline-catalyzed aldol-prenylation sequence, the following procedure is
illustrative. To 4-hydroxy-l-proline in dry DMSO (0.1 mL), was added propionaldehyde (72 µL, 1.0 mmol, 200 mol%)
at 0 °C. The reaction mixture was stirred for 24 h at 4 °C and then allowed to warm
to r.t. H2O (0.5 mL) was added, followed by indium (86.5 mg, 0.75 mmol, 150 mol%), NaI (112.9
mg, 0.75 mmol, 150 mol%) and prenyl bromide (88 µL, 0.75 mmol, 150 mol%). The reaction
mixture was stirred for 2 h at r.t. EtOAc (5 mL) was added and the resulting mixture
was acidified with 6 M HCl and extracted with EtOAc (2 × 5 mL). The combined organic
extracts were washed with brine (5 mL), dried over anhyd Na2SO4, and concentrated in vacuo. The crude product was purified by flash chromatography
(30% MTBE in hexane) to yield 39.3 mg (42%) of pure 8a.
<A NAME="RG47404ST-22">22</A>
Selected characterization data:
2,4-Dimethyloct-7-ene-3,5-diol (5, Table 2, Entries 4 and 5).
Mixture of diastereomers; R
f
= 0.26 (50% MTBE in hexane). IR (thin film): 3342, 2966, 2938, 1642, 1460, 1333,
1138, 1035, 968, 913 cm-1. 1H NMR (400 MHz, CDCl3): δ = 5.73-5.93 (m, 1 H), 5.09-5.17 (m, 2 H), 3.97 (ddd, 1 H, J = 7.2, 5.2, 2.1 Hz), 3.89 (ddd, 1 H, J = 7.6, 5.6, 2.1 Hz), 3.85 (ddd, 1 H, J = 7.8, 5.6, 2.0 Hz), 3.83 (ddd, 1 H, J = 8.5, 5.0, 2.2 Hz), 3.75 (ddd, 1 H, J = 7.8, 5.9, 1.8 Hz), 3.67 (dt, 1 H, J = 8.1, 3.0 Hz), 3.64 (dt, 1 H, J = 8.7, 3.3 Hz), 3.53-3.59 (m, 1 H, J = 9.5, 2.0 Hz), 3.40 (dd, 1 H, J = 8.9, 2.6 Hz), 3.29 (t, 1 H, J = 6.1 Hz), 2.11-2.56 (m, 2 H), 1.46-1.91 (m, 2 H), 0.78-1.01 (m, 9 H). 13C NMR (150 MHz, CDCl3): δ = 135.5, 135.3, 135.2, 135.0, 118.3, 118.2, 117.9, 117.8, 81.0, 80.9, 80.4, 78.8,
76.4, 75.7, 75.4, 71.9, 40.9, 40.3, 40.1, 39.6, 38.8, 37.9, 37.8, 37.5, 34.8, 34.7,
31.8, 31.6, 31.0, 30.1, 27.1, 22.8, 20.4, 19.8, 19.1, 17.3, 14.3, 14.1, 13.1, 11.6.
The major isomer could be readily correlated with literature data (see ref.25). HRMS (benzaldehyde acetal derivative): m/z calcd for C17H24O2: 260.1775; found: 260.1775.
(3
S
,4
S
,5
S
)-4,6,6-Trimethyl-oct-7-ene-3,5-diol (8a, Table 4, Entries 1 and 2).
R
f
= 0.26 (30% MTBE in hexane). [α]D -5.4 (c 0.5, CH2Cl2). IR (thin film): 3467, 3019, 2966, 2935, 1638, 1464, 1414, 1130, 1030, 692 cm-1. 1H NMR (400 MHz, CDCl3): δ = 5.86 (dd, 1 H, J = 17.5, 10.7 Hz), 5.08 (dd, 1 H, J = 1.3, 10.7 Hz), 5.05 (dd, 1 H, J = 1.3, 17.5 Hz), 3.58 (dt, 1 H, J = 3.1, 8.2 Hz), 3.27 (d, 1 H, J = 5.5 Hz), 1.74-1.67 (m, 1 H), 1.64 (ddq, 1 H, J = 3.1, 7.3, 14.3 Hz), 1.39 (ddq, 1 H, J = 7.3, 8.2, 14.3 Hz), 1.04 (s, 6 H), 0.96 (t, 3 H, 7.3 Hz), 0.89 (d, 3 H, 7.0 Hz).
13C NMR (100 MHz, CDCl3): δ = 145.7, 113.1, 83.3, 76.0, 42.8, 38.6, 27.5, 23.1, 22.3, 18.7, 9.4. HRMS (ESI):
m/z calcd for C11H22O2Na: 209.1517; found: 209.1507.
(3
S
,4
S
,5
S
)-2,4,6,6-Tetramethyloct-7-ene-3,5-diol (9, Table 4, Entries 3 and 4).
Mp 74-75 °C; R
f
= 0.33 (30% MTBE in hexane); [α]D -3.2 (c 0.8, CHCl3). IR (thin film): 3316, 2965, 2934, 1642, 1469, 1382, 1262, 1100, 1060, 990 cm-1. 1H NMR (600 MHz, CDCl3): δ = 5.87 (dd, 1 H, J = 17.6, 10.9 Hz), 5.06 (dd, 1 H, J = 10.7, 1.0 Hz), 5.03 (dd, 1 H, J = 17.8, 1.2 Hz), 3.45 (dd, 1 H, J = 9.0, 2.8 Hz), 3.26 (d, 1 H, J = 5.6 Hz), 1.85 (dq, 1 H, J = 7.0, 3.0 Hz), 1.76 (ddq, 1 H, J = 9.0, 5.6, 7.0 Hz), 1.03 (s, 3 H), 1.02 (s, 3 H), 0.98 (d, 3 H, J = 6.9 Hz), 0.86 (d, 3 H, J = 7.0 Hz), 0.83 (d, 3 H, J = 6.8 Hz). 13C NMR (150 MHz, CDCl3): δ = 145.9, 113.2, 83.8, 79.1, 43.1, 36.5, 29.7, 23.3, 22.9, 20.6, 19.0, 14.2. Anal.
Calcd for C12H24O2: C, 72.0; H, 12.1. Found: C, 71.9; H, 12.5.
<A NAME="RG47404ST-23">23</A>
For the crossed-aldol-allylation sequence, the following procedure is illustrative.
To l-proline (11.7 mg, 0.1 mmol, 10 mol%) and isobutyraldehyde (185 µL, 2.0 mmol, 200
mol%) in DMF (0.5 mL), was added with syringe pump a solution of propionaldehyde (72
µL, 1.0 mmol, 100 mol%) in DMF (0.5 mL) at 4 °C during 30 h. The reaction mixture
was stirred for additional 10 h at 4 °C. Then, to the reaction mixture were added
H2O (1.0 mL), In (229.6 mg, 2.0 mmol, 200 mol%), and allyl bromide (175 µL, 2.0 mmol,
200 mol%). The reaction mixture was stirred for additional 2 h at r.t. The reaction
mixture was extracted with EtOAc (2 × 5 mL). The combined organic layers
were dried over anhyd Na2SO4, concentrated in vacuo, and purified by flash chromatography (50% MTBE in hexane)
to yield 109 mg (63%) of 4 as a mixture of diastereomers.
<A NAME="RG47404ST-24">24</A>
The original anti:syn isomer ratio (ca. 25:1) of the aldol products 6a/6b derived from 3 is eroded slightly in the allylation step, possibly as a result of enrichment due
to kinetic differences in the rate of the reaction. It should be noted that in the
corresponding aldol-prenylation sequence the original anti:syn ratios were faithfully preserved.
<A NAME="RG47404ST-25">25</A>
Rychnovsky SD.
Rogers B.
Yang G.
J. Org. Chem.
1993,
58:
3511
<A NAME="RG47404ST-26">26</A>
Tenenbaum JM.
Woerpel KA.
Org. Lett.
2003,
5:
4325
<A NAME="RG47404ST-27">27</A>
Bracher F.
Litz T.
Bioorg. Med. Chem.
1996,
4:
877
<A NAME="RG47404ST-28A">28a</A>
Data for 9 has been deposited with the CCDC entry number 258398. X-ray crystallographic data
collection and processing: Crystallographic data were collected at 173 K on a Nonius
Kappa CCD area-detector diffractometer using graphite monochromatized MoKα radiation
(λ = 0.71073 Å). The data collection was performed using φ and ω scans. The data were
processed using DENZO-SMN v0.93.0. The structures were solved by direct methods using
the SHELXS program and full-matrix least-squares refinements on F2 were performed using SHELXL-97 program. All heavy atoms were refined anisotropically.
The CH hydrogen atoms were included at the fixed distances with fixed displacement
parameters from their host atoms, except the vinyl hydrogens, which were refined with
fixed displacement parameters. The figure was drawn with Ortep-3 for Windows.
<A NAME="RG47404ST-28B">28b</A>
Otwinowski Z.
Minor W.
Methods in Enzymology, Volume 276: Macromolecular Crystallography, Part A
Carter CW.
Sweet RM.
Academic Press;
New York:
1997.
p.307-326
<A NAME="RG47404ST-28C">28c</A>
Sheldrick GM.
SHELX-97
University of Göttingen;
Germany:
1997.
<A NAME="RG47404ST-29">29</A>
A similar boat-chair transition state geometry has been proposed by Chemler and Roush
to account for the anti-selectivity of the reactions between crotyltrifluorosilanes and β-hydroxyaldehydes.
See ref. 13a.
<A NAME="RG47404ST-30A">30a</A>
Isaac MB.
Chan T.-H.
Tetrahedron Lett.
1995,
36:
8957
<A NAME="RG47404ST-30B">30b</A>
Paquette LA.
Mitzel TM.
J. Org.Chem.
1996,
61:
8799
For informative discussions, see:
<A NAME="RG47404ST-31A">31a</A>
Hoffmann RW.
Dahlmann G.
Andersen MW.
Synthesis
1994,
629
<A NAME="RG47404ST-31B">31b</A>
Ref. 13a.