Abstract
A three-step procedure has been developed to convert substituted p -dimethoxybenzenes to quinone ammonium salts. Five examples of quinone ammonium salts have been prepared with this procedure. In the first step, the aromatic species is reacted with N -(hydroxymethyl)trifluoroacetamide and trifluoroacetic acid. The trifluoroacetamide product is then oxidatively demethylated and finally hydrolyzed to afford the quinone ammonium salt.
Key words
ammonium quinones - dimerizations - electrophilic aromatic substitutions - crystal structures - ammonium salts
References 1 Current address: Department of Medicinal Chemistry, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121.
2
Wehrli PA.
Pigott F.
Fischer U.
Kaiser A.
Helv. Chim. Acta
1972,
55:
3057
3a
Pachatouridis C.
Couladouros EA.
Papageorgiou VP.
Liakopoulou-Kyriakides M.
Lett. Pept. Sci.
1998,
5:
259
3b
Aulinger K.
Arnold N.
Steglich W.
Z. Naturforsch., C: J. Biosci.
2000,
55:
481
4
Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman JR.
Montgomery JA.
Vreven T.
Kudin KN.
Burant JC.
Millam JM.
Iyengar SS.
Tomasi J.
Barone V.
Mennucci B.
Cossi M.
Scalmani G.
Rega N.
Petersson GA.
Nakatsuji H.
Hada M.
Ehara M.
Toyota K.
Fukuda R.
Hasegawa J.
Ishida M.
Nakajima T.
Honda Y.
Kitao O.
Nakai H.
Klene M.
Li X.
Knox JE.
Hratchian HP.
Cross JB.
Adamo C.
Jaramillo J.
Gomperts R.
Stratmann RE.
Yazyev O.
Austin AJ.
Cammi R.
Pomelli C.
Ochterski JW.
Ayala PY.
Morokuma K.
Voth GA.
Salvador P.
Dannenberg JJ.
Zakrzewski VG.
Dapprich S.
Daniels AD.
Strain MC.
Farkas O.
Malick DK.
Rabuck AD.
Raghavachari K.
Foresman JB.
Ortiz JV.
Cui Q.
Baboul AG.
Clifford S.
Cioslowski J.
Stefanov BB.
Liu G.
Liashenko A.
Piskorz P.
Komaromi I.
Martin RL.
Fox DJ.
Keith T.
Al-Laham MA.
Peng CY.
Nanayakkara A.
Challacombe M.
Gill PMW.
Johnson B.
Chen W.
Wong MW.
Gonzalez C.
Pople JA.
Gaussian 03, Revision B.04
Gaussian Inc.;
Pittsburgh PA:
2003.
5a
Barry JE.
Mayeda EA.
Ross SD.
Tetrahedron
1977,
33:
369
For reviews see:
5b
Zaugg HE.
Martin WB.
Org. React.
1965,
14:
52
5c
Zaugg HE.
Synthesis
1970,
49
5d
Zaugg HE.
Synthesis
1984,
85
5e
Zaugg HE.
Synthesis
1984,
181
6a
Wiedenfeld D.
Minton MA.
Nesterov VN.
Glass DR.
Montoya CL.
Tetrahedron Lett.
2004,
45:
4023
6b
Wiedenfeld DJ.
Nesterov VN.
Minton MA.
Glass DR.
Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
2003,
59:
700
7a
Rathore R.
Bosch E.
Kochi JK.
Tetrahedron
1994,
50:
6727
7b
Rathore R.
Bosch E.
Kochi JK.
J. Chem. Soc., Perkin Trans. 2
1994,
1157
8
Jacob P.
Callery PS.
Shulgin AT.
Castagnoli N.
J. Org. Chem.
1976,
41:
3627
9 Review: Ellis GP.
Romney-Alexander TM.
Chem. Rev.
1987,
87:
779
10
Musgrave OC.
Chem. Rev.
1969,
69:
499 (510)
A general reference on quinone chemistry:
11a
The Chemistry of the Quinonoid Compounds
Vol. 1:
Patai S.
Rappoport Z.
Wiley;
New York:
1974.
11b
The Chemistry of the Quinonoid Compounds
Vol. 2:
Patai S.
Rappoport Z.
Wiley;
New York:
1988.
12 Chlorinated precursors for amidomethylation were prepared by addition
[13 ]
of anhydrous hydrogen chloride
[14 ]
to the three isomers of dimethyl-1,4-benzoquinone (xyloquinones) followed by O -methylation with dimethyl sulfate under phase transfer conditions.
[15 ]
The bromo substrate was prepared by direct bromination of the hydroquinone dimethyl ether. The cyano derivative was prepared by cyanide displacement
[9 ]
of the bromide.
13a
Terentyev AP.
Grinev AN.
Terentyev AB.
J. Gen. Chem. U.S.S.R.
1954,
24:
1415
13b For a review of nucleophilic additions to quinones see: Kutyrev AA.
Tetrahedron
1991,
47:
8043
14 Anhyd HCl can be conveniently prepared by adding AcCl to anhyd MeOH: Bain CD.
Troughton EB.
Tao Y.-T.
Evall J.
Whitesides GM.
Nuzzo RG.
J. Am. Chem. Soc.
1989,
111:
321 ; supplementary material
15a Methylation procedure adapted from: El-Kemary MA.
Can. J. Appl. Spectrosc.
1996,
41:
81
15b For a general discussion on the optimum conditions for phase transfer reactions see: Foglia TA.
Barr PA.
Malloy AJ.
J. Am. Oil Chem. Soc.
1977,
54:
858A
16
Nishinaga A.
Hayashi H.
Matsuura T.
Bull. Chem. Soc. Jpn.
1974,
47:
1813
17
Hubig SM.
Jung W.
Kochi JK.
J. Org. Chem.
1994,
59:
6233
18
Stjernström N.
Arkiv Kemi
1963,
21:
73
19
Rathore R.
Bosch E.
Kochi JK.
Tetrahedron Lett.
1994,
35:
1335
20a
Franck B.
Stöckigt J.
Zeidler U.
Franckowiak G.
Chem. Ber.
1973,
106:
1198
20b
Smith LI.
Opie JW.
J. Org. Chem.
1941,
6:
427
21
Smith LI.
Wiley PF.
J. Am. Chem. Soc.
1946,
68:
887
22a
Rathore R.
Kochi JK.
J. Org. Chem.
1995,
60:
7479
22b See also: Hunt SE.
Lindsey AS.
J. Chem. Soc.
1962,
4550
22c See also: Jacini G.
Bacchetti T.
Gazz. Chim. Ital.
1950,
80:
757
23a
Smith LI.
Byers DJ.
J. Am. Chem. Soc.
1941,
63:
612
23b
Kohn M.
Feldmann MK.
Monatsh. Chem.
1928,
49:
169
24a
Baciocchi E.
Rol C.
Mandolini L.
J. Org. Chem.
1977,
42:
3682
24b
Dust LA.
Gill EW.
J. Chem. Soc. C
1970,
1630
24c
Dinçtürk S.
Ridd JH.
J. Chem. Soc., Perkin Trans. 2
1982,
961
24d
Dinçtürk S.
Ridd JH.
J. Chem. Soc., Perkin Trans. 2
1982,
965
25
Kislyi VP.
Nesterov VN.
Semenov VV.
Russ. Chem. Bull.
1999,
48:
1139
26
Wiedenfeld D.
Minton M.
Nesterov VN.
Montoya C.
J. Chem. Crystallogr.
2004,
34:
95
27
Sheldrick GM.
SHELXTL-97 V5.10
Bruker AXS Inc.;
Madison:
1997.