Int J Sports Med 2006; 27(8): 610-616
DOI: 10.1055/s-2005-865857
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

The Influence of Ramp Rate on V·O2peak and “Excess” V·O2 during Arm Crank Ergometry

P. M. Smith1 , I. Amaral1 , M. Doherty1 , M. J. Price2 , A. M. Jones3
  • 1Centre for Sport and Exercise Science, University of Greenwich, Chatham, Kent, United Kingdom
  • 2School of Science and the Environment, Coventry University, Coventry, United Kingdom
  • 3Department of Exercise and Sport Science, Manchester Metropolitan University, Alsager, United Kingdom
Further Information

Publication History

Accepted after revision: May 30, 2005

Publication Date:
30 August 2005 (online)

Abstract

The principal aim of this study was to examine how different ramp rates influenced the attainment of peak physiological responses during incremental arm crank ergometry (ACE). Additionally, the study examined whether there was any evidence for the development of an “excess” V·O2 during ACE due to upward curvi-linearity in the V·O2-work rate relationship, and whether this was influenced by the ramp rate. Sixteen physically active, though non-specifically trained, men (mean ± s age 30 ± 8 years; height 1.79 ± 0.07 m; body mass 84.7 ± 13.2 kg) volunteered to participate. Having completed a familiarisation test, all subjects returned to the laboratory to complete two ramp tests on an electrically-braked ergometer in a counter-balanced order. Both ramp tests started at 60 W with work rate subsequently incremented by either 6 or 12 W · min-1. Pulmonary gas exchange was measured breath-by-breath throughout the tests. Subjects achieved a greater final work rate during the 12 W · min-1 test compared to the 6 W · min-1 test (168 ± 28 vs. 149 ± 26 W; p < 0.001). The V·O2peak (3.06 ± 0.65 vs. 2.96 ± 0.48 L · min-1; p = 0.27), HRpeak (179 ± 15 vs. 177 ± 16 b · min-1; p = 0.17) and V·Epeak (112 ± 22 vs. 105 ± 16 L · min-1; p = 0.09) were not different between the tests, but V·CO2peak (3.54 ± 0.64 vs. 3.27 ± 0.46 L · min-1; p = 0.01) RERpeak (1.17 ± 0.07 vs. 1.11 ± 0.06; p < 0.001), and end-exercise blood (lactate) (11.9 ± 2.1 vs. 10.8 ± 2.6 mmol · L-1; p = 0.005) were all higher in the 12 W · min-1 test. An “excess” V·O2 was observed in 13 out of 16 tests at 12 W · min-1 and in 15 out of 16 tests at 6 W · min-1. Neither the magnitude of the “excess” V·O2 (0.42 ± 0.41 vs. 0.37 ± 0.18 L · min-1; p = 0.66) nor the V·O2 at which the V·O2-work rate relationship departed from linearity (2.17 ± 0.34 vs. 2.18 ± 0.32 L · min-1; p = 0.94) were significantly different between the two ramp tests. These data indicate that differences in ramp rate within the range of 6 - 12 W · min-1 influence the peak values of work rate, V·CO2 and RER, but do not influence peak values of V·O2 or HR during ACE. The development of an “excess” V·O2 appears to be a common feature of ramp exercise in ACE, although the mechanistic basis for this effect is presently unclear.

References

  • 1 Bader D S, Maguire T E, Balady G J. Comparison of ramp versus step protocols for exercise testing in patients > or = 60 years of age.  Am J Cardiol. 1999;  83 11-14
  • 2 Beaver W L, Wasserman K, Whipp B J. A new method for detecting anaerobic threshold by gas exchange.  J Appl Physiol. 1986;  60 2020-2027
  • 3 Billat V L, Hamard L, Bocquet V, Demarie S, Beroni M, Petit B, Koralsztein J P. Influence of light additional arm cranking exercise on the kinetics of V·O2 in severe cycling exercise.  Int J Sports Med. 2000;  21 344-350
  • 4 Bogaard H J, Woltjer H H, van Keimpema A R, Postmus P E, de Vries P M. Prediction of peak oxygen uptake in men using pulmonary and hemodynamic variables during exercise.  Med Sci Sports Exerc. 1999;  32 701-705
  • 5 Bogaard H J, Woltjer H H, van Keimpema A RJ, Serra R A, Postmus P E, de Vries P MJM. Comparison of the respiratory and hemodynamic responses of healthy subjects to exercise in three different protocols.  Occup Med. 1996;  46 293-298
  • 6 Buchfuhrer M J, Hansen J E, Robinson T E, Sue D Y, Wasserman K, Whipp B J. Optimising the exercise protocol for cardiopulmonary assessment.  J Appl Physiol. 1983;  55 1558-1564
  • 7 Davis J A, Vodak P, Wilmore J A, Vodak J, Kurtz P. Anaerobic threshold and maximal aerobic power for three modes of exercise.  J Appl Physiol. 1976;  41 544-550
  • 8 Davis J A, Whipp B J, Lamarra N, Huntsman D J, Frank M H, Wasserman K. Effect of ramp slope on determination of aerobic parameters from the ramp exercise test.  Med Sci Sports Exerc. 1982;  14 339-343
  • 9 Field A. Discovering Statistics Using SPSS for Windows. London, England; Sage Publications 2000
  • 10 Gollnick P D, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates.  J Physiol. 1987;  241 45-57
  • 11 Hansen J E, Casaburi R, Cooper D M, Wasserman K. Oxygen uptake as related to work rate increment during cycle ergometer exercise.  Eur J Appl Physiol. 1988;  57 140-145
  • 12 Ivy J L, Chi M M, Hintz C S, Sherman W M, Hellendall R P, Lowry O H. Progressive metabolite changes in individual human muscle fibers with increasing work rates.  Am J Physiol. 1987;  252 630-639
  • 13 Jones A M, Carter H, Doust J H. A disproportionate increase in V·O2 coincident with lactate threshold during treadmill exercise.  Med Sci Sports Exerc. 1999;  31 1299-1306
  • 14 Jones A M, Pringle J SM, Carter H. Influence of muscle fibre type and motor unit recruitment on V·O2kinetics. Jones AM, Poole DC Oxygen Uptake Kinetics in Sport, Exercise and Medicine. London; Routledge 2005: 261-293
  • 15 Kang J, Robertson R J, Goss F L, Dasilva S G, Suminski R R, Utter A C, Zoeller R F, Metz K F. Metabolic efficiency during arm and leg exercise at the same relative intensities.  Med Sci Sports Exerc. 1997;  29 377-382
  • 16 Koppo K, Bouckaart J, Jones A M. Oxygen uptake kinetics during high-intensity arm and leg exercise.  Resp Physiol Neurobiol. 2002;  133 241-250
  • 17 Kowalchuk J M, Heigenhauser G J, Lindinger M I, Sutton J R, Jones N L. Factors influencing hydrogen ion concentration in muscles after intense exercise.  J Appl Physiol. 1988;  65 2080-2089
  • 18 Lucia A, Rivero J-LL, Perez M, Serrano A L, Calbet J AL, Santalla A, Chicharro J L. Determinants of V·O2 kinetics at high power outputs during a ramp exercise protocol.  Med Sci Sports Exerc. 2002;  34 326-331
  • 19 Miyahara N, Eda R, Takeyama H, Maeda T, Aoe K, Kunichika N, Kohara H, Harada M. Cardiorespiratory responses during cycle ergometer exercise with different ramp slope increments in patients with chronic obstructive pulmonary disease.  Intern Med. 2000;  39 15-19
  • 20 Myers J, Bellin D. Ramp exercise protocols for clinical and cardiopulmonary exercise testing.  Sports Med. 2000;  30 23-29
  • 21 Myers J, Buchanan N, Smith D, Neutel J, Bowes E, Walsh D, Froelicher V F. Individualized ramp treadmill. Observations on a new protocol.  CHEST. 1992;  101 236-241
  • 22 Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Hamilton-Wessler M, Froelicher V F. Comparison of the ramp verses standard exercise protocols.  J Am Coll Cardiol. 1991;  17 1334-1342
  • 23 Noakes T D. Implications of exercise testing for prediction of athletic performance: a contemporary perspective.  Med Sci Sports Exerc. 1998;  20 319-330
  • 24 Pedersen P K, Sorensen J B, Jensen K, Johansen L, Levin K. Muscle fibre type distribution and non-linear V·O2-power output relationship in cycling.  Med Sci Sports Exerc. 2002;  34 655-661
  • 25 Poole D C, Gaesser G A, Hogan M C, Knight D R, Wagner P D. Pulmonary and leg V·O2during submaximal exercise: Implications for muscular efficiency.  J Appl Physiol. 1992;  72 805-810
  • 26 Poole D C, Jones A M. Towards an understanding of the mechanistic bases of V·O2 kinetics. Jones AM, Poole, DC Oxygen Uptake Kinetics in Sport, Exercise and Medicine. London; Routledge 2005
  • 27 Poole D C, Ward S A, Gardner G W, Whipp B J. Metabolic and respiratory profile of the upper limit for prolonged exercise in man.  Ergonomics. 1988;  31 1265-1279
  • 28 Powers S K, Howley (eds) E T. Exercise Physiology: Theory and Application to Fitness and Performance. Dubuque, Iowa; McGraw-Hill 2004
  • 29 Price M J, Campbell I G. Determination of peak oxygen uptake during upper body exercise.  Ergonomics. 1997;  40 491-499
  • 30 Pringle J SM, Jones A M. Maximal lactate steady state, critical power and EMG during cycling.  Eur J Appl Physiol. 2002;  88 214-226
  • 31 Rossiter H B, Ward S A, Kowalchuck J M, Howe F A, Griffiths J R, Whipp B J. Dynamic asymmetry of phosphocreatine concentration and O2 uptake between the on- and off-transients of moderate- and high-intensity exercise in humans.  J Physiol. 2002;  541 991-1002
  • 32 Sawka M N. Physiology of upper body exercise.  Exerc Sport Sci Rev. 1986;  14 175-211
  • 33 Sawka M N, Foley M E, Pimental N A, Toner M M, Pandolf K B. Determination of maximal aerobic power during upper body exercise.  J Appl Physiol. 1983;  54 113-117
  • 34 Sawka M N, Miles D S, Petrofsky J S, Wilde S W, Glaser R M. Ventilation and acid-base equilibrium for upper body and lower body exercise.  Aviat Space Environ Med. 1982;  53 354-359
  • 35 Scheuermann B W, Tripse McConnell J H, Barstow T J. EMG and oxygen uptake responses during slow and fast ramp exercise in humans.  Exp Physiol. 2002;  87 91-100
  • 36 Shaw D J, Crawford M H, Karliner J S, DiDonna G, Carleton R M, Ross J, O'Rourke R A. Arm-crank ergometry: a new method for the evaluation of coronary artery disease.  Am J Cardiol. 1974;  33 801-805
  • 37 Smith P M, Doherty M, Drake D, Price M J. The influence of step and ramp type protocols on the attainment of peak physiological responses during arm crank ergometry.  Int J Sports Med. 2004;  25 616-621
  • 38 Smith P M, Price M J, Doherty M. The influence of crank rate on peak oxygen consumption during arm crank ergometry.  J Sports Sci. 2001;  19 955-960
  • 39 Takaishi T, Ono T, Yasuda Y. Relationship between muscle fatigue and oxygen uptake during cycle ergometer exercise with different ramp slope increments.  Europ J Appl Physiol. 1992;  65 335-339
  • 40 Whipp B J, Davis J A, Torress F, Wasserman K. A test to determine parameters of aerobic function during exercise.  J Appl Physiol. 1981;  50 217-221
  • 41 Zhang Y, Johnson II M C, Chown N, Wasserman K. Effect of exercise testing protocol on parameters of aerobic function.  Med Sci Sports Exerc. 1991;  23 625-630
  • 42 Zoladz J A, Duda K, Majerczak J. Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans.  Eur J Appl Physiol. 1998;  77 445-541
  • 43 Zoladz J A, Rademaker A CHJ, Sargeant A J. Non-linear relationship between O2 uptake and power output at high intensities of exercise in humans.  J Physiol. 1995;  488 211-217

P. M. Smith

Centre for Sport and Exercise Science, University of Greenwich (at Medway)

Chatham Maritime

Chatham, Kent, ME4 4TB

United Kingdom

Email: pmsmith@ntlworld.com

Email: sp70@gre.ac.uk