References
1 Visiting scientist from Sankyo Co., Ltd.
2 For a recent example of stereoselective synthesis of spiro[4.5]decane framework, see: Maulide N.
Vanherck
J.-C.
Markò IE.
Eur. J. Org. Chem.
2004,
3962 ; and references therein
3
Katsui N.
Matsunaga A.
Kitahara H.
Yagihashi F.
Murai A.
Masamune T.
Sato N.
Bull. Chem. Soc. Jpn.
1977,
50:
1217 ; and references therein
4
Abe F.
Chen R.-F.
Yamauchi T.
Phytochemistry
1991,
30:
3379
For reviews on the synthesis of spirocyclic compounds, see:
5a
Sannigrahi M.
Tetrahedron
1999,
55:
9007
5b
Krapcho AP.
Synthesis
1974,
383
For reviews on the Claisen rearrangement, see:
6a
Rhoads SJ.
Rawlins NR.
Org. React.
1975,
22:
1
6b
Ziegler FE.
Chem. Rev.
1988,
88:
1423
6c
Wipf P. In Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Heathcock CH.
Pergamon;
Oxford:
1991.
p.827
6d
Enders D.
Knopp M.
Schiffers R.
Tetrahedron: Asymmetry
1996,
7:
1847
6e
Ito H.
Taguchi T.
Chem. Soc. Rev.
1999,
28:
43
6f
Chai Y.
Hong S.-P.
Lindsay HA.
McFarland C.
McIntosh MC.
Tetrahedron
2002,
58:
2905
6g
Hieremann M.
Abraham L.
Eur. J. Org. Chem.
2002,
1461
6h
Martin Castro AM.
Chem. Rev.
2004,
104:
2939
For examples of synthesis of spiro[4.5]decanes by Claisen rearrangement of bicyclic dihydropyrans without a high-oxidation state group in 4-position, see:
7a
Ireland RE.
Aristoff PA.
J. Org. Chem.
1979,
44:
4323
7b
Shishido K.
Hiroya K.
Fukumoto K.
Kametani T.
Tetrahedron Lett.
1986,
27:
971
7c
Brugnolotti M.
Corsico CodaA.
Desimoni C.
Faita G.
Gamba Invernizzi A.
Righetti PP.
Tacconi G.
Tetrahedron
1988,
44:
5229
7d
Desimoni G.
Faita G.
Gamba A.
Righetti PP.
Tacconi G.
Toma L.
Tetrahedron
1990,
46:
2165
8 All new compounds were fully characterized by 1H NMR and 13C NMR, IR and mass spectra. Data for the selected compounds follow.
Compound 4: R
f
= 0.38 (hexane-EtOAc = 75:25). 1H NMR (300 MHz, CDCl3): δ = 5.88 (dq, J = 15.4, 6.4 Hz, 1 H), 5.66 (ddq, J = 15.4, 7.2, 1.5 Hz, 1 H), 4.88 (ddd, J = 12.5, 7.2, 4.3 Hz, 1 H), 2.60-2.50 (m, 5 H), 2.41 (dd, J = 16.9, 4.1 Hz, 1 H), 1.92 (quint., J = 7.5 Hz, 2 H), 1.77 (dd, J = 6.4, 1.5 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 189.74, 178.39, 131.37, 127.79, 114.01, 81.57, 40.87, 32.73, 25.43, 19.11, 17.73. IR (neat): 1779, 1666, 1613, 1426, 1154, 965 cm-1. HRMS (EI): m/z calcd for C11H14O2: 178.0994; found: 178.0987.
Compound 5b (>95% dr by 1H NMR analysis): R
f
= 0.56 (hexane-EtOAc = 90:10). 1H NMR (300 MHz, CDCl3): δ = 5.70 (dq, J = 15.3, 6.2 Hz, 1 H), 5.55 (dd, J = 15.3, 7.3 Hz, 1 H), 4.38-4.27 (m, 2 H), 2.42-2.08 (m, 5 H), 1.94 (ddd, J = 13.4, 6.5, 2.2 Hz, 1 H), 1.81-1.72 (m, 2 H), 1.63 (d, J = 6.2 Hz, 3 H), 0.82 (s, 9 H), 0.00 (s, 3 H), -0.01 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 153.00, 130.39, 128.96, 110.59, 77.37, 64.69, 38.81, 31.37, 28.90, 25.80, 19.18, 18.24, 17.71, -4.61, -4.88. IR (neat): 1686 cm-1. HRMS (ESI): m/z calcd for C17H30O2NaSi: 317.1907; found: 317.1897.
Compound 9 (>95% dr by 1H NMR analysis): R
f
= 0.52 (hexane-EtOAc = 75:25). 1H NMR (400 MHz, CDCl3): δ = 5.73 (ddt, J = 9.8, 4.0, 2.9 Hz, 1 H), 5.61 (dq, J = 9.8, 2.9 Hz, 1 H), 3.17 (dq, J = 20.8, 2.9 Hz, 1 H), 2.86-2.73 (m, 2 H), 2.61-2.57 (m, 1 H), 2.36-2.29 (m, 1 H), 2.24-2.15 (m, 1 H), 2.01-1.80 (m, 3 H), 1.12 (d, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 214.01, 204.38, 131.05, 122.54, 68.28, 41.40, 40.64, 37.99, 30.98, 19.82, 16.19. IR (neat): 1737, 1704 cm-1. HRMS (ESI): m/z calcd for C11H14O2Na: 201.0886; found: 201.0889.
Compound 11 (>95% dr by 1H NMR analysis): R
f
= 0.51 (hexane-EtOAc = 90:10). 1H NMR (400 MHz, CDCl3): δ = 5.52-5.40 (m, 2 H), 4.13 (dd, J = 9.5, 6.1 Hz, 1 H), 2.27-2.20 (m, 4 H), 2.06-1.87 (m, 3 H), 1.81-1.62 (m, 2 H), 0.89 (d, J = 7.4 Hz, 3 H), 0.78 (s, 9 H), 0.00 (s, 3 H), -0.03 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 220.52, 131.07, 123.14, 66.03, 56.41, 39.95, 37.20, 33.17, 29.10, 25.80, 18.69, 17.94, 17.59, -4.13, -5.26. IR (neat): 1734 cm-1. HRMS (ESI): m/z calcd for C17H30O2NaSi: 317.1907; found: 317.1903.
Compound 12 (>95% dr by 1H NMR analysis): R
f
= 0.81 (hexane-EtOAc = 75:25). 1H NMR (400 MHz, CDCl3): δ = 5.64-5.48 (m, 2 H), 4.21 (d, J = 3.7 Hz, 1 H), 4.17 (dd, J = 5.6, 4.4 Hz, 1 H), 2.20-1.63 (m, 7 H), 1.49 (s, 3 H), 1.38 (s, 3 H), 1.35-1.25 (m, 2 H), 0.98 (d, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 131.89, 123.29, 97.55, 74.81, 64.26, 46.54, 36.48, 30.34, 30.12, 30.10, 26.07, 19.89, 19.51, 15.43. IR (neat): 1092 cm-1. HRMS (ESI): m/z calcd for C14H22O2Na: 245.1512; found: 245.1500.
Compound 14 (67% dr by 1H NMR analysis): R
f
= 0.42 and 0.34 (hexane-EtOAc = 90:10). 1H NMR (400 MHz, CDCl3): δ = 5.94 (dt, J = 5.2, 1.6 Hz, 1 H), 5.77 (ddt, J = 9.6, 5.2, 2.0 Hz, 0.33 H), 5.68 (ddt, J = 9.6, 0.8, 3.6 Hz, 0.33 H), 5.64-5.57 (m, 1.33 H), 3.59 (s, 2 H), 3.42 (s, 1 H), 2.94 (br d, J = 20.4 Hz, 0.67 H), 2.71-2.64 (m, 1.33 H), 2.48 (ddq, J = 18.0, 1.2, 5.2 Hz, 0.33 H), 2.37-2.05 (m, 4.33 H), 1.94-1.68 (m, 2.33 H), 1.12 (d, J = 6.8 Hz, 1 H), 1.00 (d, J = 7.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 219.53, 218.52, 142.51, 142.34, 133.27, 131.07, 124.79, 124.11, 114.79, 111.26, 59.60, 58.99, 54.87, 53.57, 39.70, 38.56, 37.28, 37.19, 36.93, 36.04, 27.28, 23.23, 18.97, 18.51, 16.55, 16.47. IR (neat): 2961, 1732, 1670, 1222, 1128 cm-1. HRMS (EI): m/z calcd for C13H18O2: 206.1307; found: 206.1306.
Compound 16 (52% dr by 1H NMR analysis): R
f
= 0.30 and 0.21 (hexane-EtOAc = 75:25). 1H NMR (400 MHz, CDCl3): δ = 9.74 (s, 0.48 H), 9.57 (s, 0.52 H), 5.77-5.58 (m, 2 H), 4.01 (br s, 0.52 H), 3.78 (br s, 0.48 H), 2.72-2.57 (m, 1 H), 2.48-1.78 (m, 8 H), 1.09 (d, J = 7.3 Hz, 1.56 H), 1.03 (d, J = 7.6 Hz, 1.44 H). 13C NMR (100 MHz, CDCl3): δ = 219.53, 202.31, 201.53, 130.95 130.88, 122.35, 121.56, 79.47, 78.78, 58.49, 53.68, 40.33, 39.92, 38.86, 37.44, 32.42, 31.91, 30.99, 19.91, 19.06, 17.39, 16.42. IR (neat): 3471, 1730 cm-1. HRMS (ESI): m/z calcd for C12H16O3Na: 231.0991; found: 231.0986.
9
Collins I.
Nadin A.
Holmes AB.
Long ME.
Man J.
Baker R.
J. Chem. Soc., Perkin Trans. 1
1994,
2205
10
Dess DB.
Martin JC.
J. Am. Chem. Soc.
1991,
113:
7277
11
Luche J.-L.
Rodriguez-Hahn L.
Carabbé P.
J. Chem. Soc., Chem. Commun.
1978,
601
12 The relative stereochemistry shown for 5a was not determined at this point, however, this stereochemistry was predicted from the results of the nucleophilic addition to the carbonyl group in simple 6-substituted dihydropyrones. For example of methylation, see: Trost BM.
Gunzner JL.
Dirat O.
Rhee YH.
J. Am. Chem. Soc.
2002,
124:
10396 ; this prediction is also supported by the stereochemistry of 12 derived from rearrangement product 11
13a
Earnshaw C.
Wallis CJ.
Warren S.
J. Chem. Soc., Perkin Trans. 1
1979,
3099
13b
Patel D.
Schmidt RJ.
Gordon EM.
J. Org. Chem.
1992,
57:
7143
For recent reviews on microwave-assisted organic synthesis, see:
14a
Lidström P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
14b
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199
15 For a review on Lewis acid catalyzed Claisen rearrangement, see: Lutz RP.
Chem. Rev.
1984,
84:
205
16
Takai K.
Mori I.
Oshima K.
Nozaki H.
Bull. Chem. Soc. Jpn.
1984,
57:
446
For examples of palladium-catalyzed Claisen rearrangement, see:
17a
Bann JL.
Bickelhaupt F.
Tetrahedron Lett.
1986,
27:
6267
17b
Mikami K.
Takahashi K.
Nakai T.
Tetrahedron Lett.
1987,
28:
5879
17c For a review on mercury(II)- or palladium(II)-catalyzed Claisen rearrangement, see: Overman LE.
Angew. Chem., Int. Ed. Engl.
1984,
23:
579
18
Büchi G.
Powell JE.
J. Am. Chem. Soc.
1970,
92:
3126
19 Under the thermal condition at lower temperature (165 °C), no formation of spiro[4.5]decane 11 was observed.
20
Experimental Procedure.
A solution of 5b (109 mg, >95% dr) in dry toluene (3.7 mL) was heated at 250 °C for 11 h in a sealed tube. The resulting mixture was cooled to r.t. and concentrated. Purification by silica gel column chromatography (hexane-EtOAc = 98:2) gave 75 mg (69% yield, >95% dr by 1H NMR analysis) of 11 as a colorless clear oil.
21 For a related example, see: Kang H.-J.
Paquette LA.
J. Am. Chem. Soc.
1990,
112:
3252
22a
Borowitz IJ.
Gonis G.
Tetrahedron Lett.
1964,
1151
22b
Borowitz IJ.
Gonis G.
Kelsey R.
Rapp R.
Williams GJ.
J. Org. Chem.
1966,
31:
3032