ABSTRACT
Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the Gq -coupled P2Y1 subtype and the Gi -coupled P2Y12 subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y1 receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y12 receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X1 receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although α,β-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X1 receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X1 receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y1 receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.
KEYWORDS
G protein-coupled receptors - P2Y receptors - agonist - antagonist - mutant
REFERENCES
1
Kunapuli S P, Ding Z, Dorsam R T et al..
ADP receptors-targets for developing antithrombotic agents.
Curr Pharm Des.
2003;
9
2303-2316
2
Jacobson K A, Jarvis M F, Williams M.
Perspective: purine and pyrimidine (P2) receptors as drug targets.
J Med Chem.
2002;
45
4057-4093
3
Leon C, Ravanat C, Freund M, Cazenave J P, Gachet C.
Differential involvement of the P2Y1 and P2Y12 receptors in platelet procoagulant activity.
Arterioscler Thromb Vasc Biol.
2003;
23
1941-1947
4
Jagroop I A, Burnstock G, Mikhailidis D P.
Both the ADP receptors P2Y1 and P2Y12 , play a role in controlling shape change in human platelets.
Platelets.
2003;
14
15-20
5
Hechler B, Lenain N, Marchese P et al..
A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo.
J Exp Med.
2003;
198
661-667
6
Costanzi S, Mamedova L, Gao Z G, Jacobson K A.
Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and homology modeling.
J Med Chem.
2004;
47
5393-5404
7
Hoffmann C, Moro S, Nicholas R A, Harden T K, Jacobson K A.
The role of amino acids in extracellular loops of the human P2Y1 receptor in surface expression and activation processes.
J Biol Chem.
1999;
274
14639-14647
8
Moro S, Guo D, Camaioni E et al..
Human P2Y1 receptor: molecular modeling and site-directed mutagenesis as tools to identify agonist and antagonist recognition sites.
J Med Chem.
1998;
41
1456-1466
9
Jiang Q, Guo D, Lee B X et al..
A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor.
Mol Pharmacol.
1997;
52
499-507
10
Palmer R K, Boyer J L, Schacter J B, Nicolas R A, Harden T K.
Agonist action of adenosine triphosphates at the human P2Y1 receptor.
Mol Pharmacol.
1998;
54
1118-1123
11
Hollopeter G, Jantzen H M, Vincent D et al..
Identification of the platelet ADP receptor targeted by antithrombotic drugs.
Nature.
2001;
409
202-207
12
Foster C J, Prosser D M, Agans J M et al..
Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs.
J Clin Invest.
2001;
107
1591-1598
13
Kim H S, Barak D, Harden T K, Boyer J L, Jacobson K A.
Acyclic and cyclopropyl analogues of adenosine bisphosphate antagonists of the P2Y1 receptor: structure activity relationships and receptor docking.
J Med Chem.
2001;
44
3092-3108
14
Palczewski K, Kumasaka T, Hori T et al..
Crystal structure of rhodopsin: A G protein-coupled receptor.
Science.
2000;
289
739-745
15
Guo D, Von Kügelegen I, Moro S, Kim Y C, Jacobson K A.
Evidence for the recognition of non-nucleotide antagonists within the transmembrane domains of the human P2Y1 receptor.
Drug Dev Res.
2002;
57
173-181
16
Nicke A, Baumert H G, Rettinger J et al..
P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels.
EMBO J.
1998;
17
3016-3028
17
Brown S, Townsend-Nicholson A, Jacobson K A, Burnstock G, King B F.
Heteromultimeric P2X1/2 receptors show a novel sensitivity to extracellular pH.
J Pharmacol Exp Ther.
2002;
300
673-680
18
Ennion S, Ritson J, Evans R J.
Conserved negatively charged residues are not required for ATP action at P2X1 receptors.
Biochem Biophys Res Commun.
2001;
289
700-704
19
Spelta V, Jiang L H, Bailey R J, Surprenant A, North R A.
Interaction between cysteines introduced into each transmembrane domain of the rat P2X2 receptor.
Br J Pharmacol.
2003;
138
131-136
20
Egan T M, Cox J A, Voigt M M.
Molecular structure of P2X receptors.
Curr Top Med Chem.
2004;
4
821-829
21 Cusack N J, Hourani S MO. Adenosine, adenine nucleotides, and platelet function. In: Phillis JW Adenosine and Adenine Nucleotides as Regulators of Cellular Function Boca Raton, FL; CRC Press 1991: 121-131
22
Marteau F, Le Poul E, Communi D et al..
Pharmacological characterization of the human P2Y13 receptor.
Mol Pharmacol.
2003;
64
104-112
23
Fischer B, Boyer J L, Hoyle C HV et al..
Identification of potent, selective P2Y-purinoceptor agonists: structure-activity relationships for 2-thioether derivatives of adenosine 5′-triphosphate.
J Med Chem.
1993;
36
3937-3946
24
Bodor E T, Waldo G L, Hooks S B et al..
Purification and functional reconstitution of the human P2Y12 receptor.
Mol Pharmacol.
2003;
64
1210-1216
25
Boyer J L, Siddiqi S, Fischer B et al..
Identification of potent P2Y-purinoceptor agonists that are derivatives of adenosine 5′-monophosphate.
Br J Pharmacol.
1996;
118
1959-1964
26
Fischer B, Chulkin A, Boyer J L et al..
2-thioether 5′-O-(1-thiotriphosphate) adenosine derivatives as new insulin secretagogues acting through P2Y-receptors.
J Med Chem.
1999;
42
3636-3646
27
Nahum V, Zundorf G, Levesque S A et al..
Adenosine 5′-O-(1-boranotriphosphate) derivatives as novel P2Y1 receptor agonists.
J Med Chem.
2002;
45
5384-5396
28
Nandanan E, Jang S Y, Moro S et al..
Synthesis, biological activity, and molecular modeling of ribose-modified deoxyadenosine bisphosphate analogues as P2Y1 receptor ligands.
J Med Chem.
2000;
43
829-842
29
Kim H S, Ravi R G, Marquez V E et al..
Methanocarba modification of uracil and adenine nucleotides: high potency of northern ring conformation at P2Y1 , P2Y2 , or P2Y4 and P2Y11 , but not P2Y6 receptors.
J Med Chem.
2002;
45
208-218
30
Ravi R G, Kim H S, Servos J et al..
Adenine nucleotide analogues locked in a northern methanocarba conformation: enhanced stability and potency as P2Y1 receptor agonists.
J Med Chem.
2002;
45
2090-2100
31
Chhatriwala M, Ravi R G, Patel R I et al..
Induction of novel agonist selectivity for the ADP-activated P2Y1 receptor versus the ADP-activated P2Y12 and P2Y13 receptors by conformational constraint of an ADP analogue.
J Pharmacol Exp Therap.
2004;
311
1038-1043
32
Boyer J L, Romero-Avila T, Schachter J B, Harden T K.
Identification of competitive antagonists of the P2Y1 -receptor.
Mol Pharmacol.
1996;
50
1323-1329
33
Brown S G, King B F, Kim Y C, Burnstock G, Jacobson K A.
Activity of novel adenine nucleotide derivatives as agonists and antagonists at recombinant rat P2X receptors.
Drug Dev Res.
2000;
49
253-259
34
Mathieu R, Baurand A, Schmitt M, Gachet C, Bourguignon J J.
Synthesis and biological activity oif 2-alkylated deoxyadenosine bisphosphate derivatives as P2Y1 receptor antagonists.
Bioorg Med Chem.
2004;
12
1769-1779
35
Boyer J, Adams M, Ravi R G, Jacobson K A, Harden T K.
2-chloro N6 -methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate is a selective high affinity P2Y1 receptor antagonist.
Br J Pharmacol.
2002;
135
2004-2010
36
Waldo G L, Corbitt J, Boyer J L et al..
Quantitation of the P2Y1 receptor with a high affinity radiolabeled antagonist.
Mol Pharmacol.
2002;
62
1249-1257
37
Baurand A, Raboisson P, Freund M et al..
Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist.
Eur J Pharmacol.
2001;
412
213-221
38
Kim H S, Ohno M, Xu B et al..
2-Substitution of adenine nucleotide analogues containing a bicyclo[3.1.0]hexane ring system locked in a Northern conformation: Enhanced potency as P2Y1 receptor antagonists.
J Med Chem.
2003;
46
4974-4987
39
Cattaneo M, Lecchi A, Joshi B V et al..
Antiaggregatory activity in human platelets of potent antagonists of the P2Y1 receptor.
Biochem Pharmacol.
2004;
68
1995-2002
40
Raboisson P, Baurand A, Cazenave J P et al..
A general approach toward the synthesis of C-nucleoside pyrazolo[1,5-a]-1,3,5-triazines and their 3′,5′-bisphosphate C-nucleotide analogues as the first reported in vivo stable P2Y1 -receptor antagonists.
J Org Chem.
2002;
67
8063-8071
41
Kim H S, Barak D, Harden T K, Boyer J L, Jacobson K A.
Acyclic and cyclopropyl analogues of adenosine bisphosphate antagonists of the P2Y1 receptor: structure activity relationships and receptor docking.
J Med Chem.
2001;
44
3092-3108
42
Xu B, Stephens A, Kirschenheuter G et al..
Acyclic analogues of adenosine bisphosphates as P2Y receptor antagonists: phosphate substitution leads to multiple pathways of inhibition of platelet aggregation.
J Med Chem.
2002;
45
5694-5709
43
Charlton S J, Brown C A, Weisman G A et al..
PPADS and suramin as antagonists at cloned P2Y- and P2U-purinoceptors.
Br J Pharmacol.
1996;
118
704-710
44
Lambrecht G, Ganso M, Baumert H G et al..
The novel heteromeric bivalent ligand SB9 potently antagonizes P2Y1 receptor-mediated responses.
J Auton Nerv Syst.
2000;
81
171-177
45
Taniguchi M, Nagai K, Arao N et al..
YM-254890, a novel platelet aggregation inhibitor produced by Chromobacterium sp. QS3666.
J Antibiot.
2003;
56
358-363
46
Glänzel M, Bültmann R, Starke K, Frahm A W.
Members of the acid blue 129 family as potent and selective P2Y-receptor antagonists.
Drug Dev Res.
2003;
59
64-71
47
Brown J, Brown C A.
Evaluation of reactive blue 2 derivatives as selective antagonists for P2Y receptors.
Vascul Pharmacol.
2002;
39
309-315
48
King B F, Dacquet C, Ziganshin A U et al..
Potentiation by 2,2′-pyridylisatogen tosylate of ATP-responses at a recombinant P2Y1 purinoceptor.
Br J Pharmacol.
1996;
117
1111-1118
49
Gao Z G, Mamedova L, Tchilibon S, Gross A S, Jacobson K A.
2,2′-pyridylisatogen tosylate antagonizes P2Y1 receptor signaling without affecting nucleotide binding.
Biochem Pharmacol.
2004;
68
231-237
50
Mamedova L, Joshi B V, Gao Z G, von Kügelgen I, Jacobson K A.
Diisothiocyanate derivatives as potent, insurmountable antagonists of P2Y6 nucleotide receptors.
Biochem Pharmacol.
2004;
67
1763-1770
51
Ingall A H, Dixon J, Bailey A.
Antagonists of the platelet P2T receptor: a novel approach to antithrombotic therapy.
J Med Chem.
1999;
42
213-220
52
Communi D, Robaye B, Boeynaems J M.
Pharmacological characterization of the human P2Y11 receptor.
Br J Pharmacol.
1999;
128
1199-1206
53 Springthorpe B. From ATP to AZD6140: design of an orally active P2Y12 (P2T) receptor antagonist for the treatment of thrombosis. Paper presented at: 225th ACS National Meeting, Division of Medicinal Chemistry, march 23-27. March 23-21, 2003 New Orleans, LA; 16
54
Savi P, Pereillo J M, Uzabiaga M F et al..
Identification and biological activity of the active metabolite of clopidogrel.
Thromb Haemost.
2000;
84
891-896
55
Sugidachi A, Asai F, Yoneda K et al..
Antiplatelet action of R-99224, an active metabolite of a novel thienopyridine-type Gi -linked P2T antagonist, CS-747.
Br J Pharmacol.
2001;
132
47-54
56
Scarborough R M, Laibelman A M, Clizbe L A et al..
Novel tricyclic benzothiazolo[2,3-c]thiadiazine antagonists of the platelet ADP receptor (P2Y12 ).
Bioorg Med Chem Lett.
2001;
11
1805-1808
57 Fretz H, Houille O, Hilpert K, Peter O, Breu V et al.. Novel pyrazolidinc-3,5-dione derivatives are P2Y12 receptor antagonists and inhibit ADP-triggered blood platelet aggregation. Paper presented at: American Chemical Society 229th National Meeting, march 13 2005 SanDiego, CA;
58
Douglass J, Patel R I, Redick C et al..
Ribose and nucleobase modifications to nucleotides that confer antagonist properties against the P2Y12 platelet receptor.
Haematologica.
2002;
87(suppl 1)
22 (abst)
59 Cusack N J, Hourani S MO. Structure activity relationships for adenine nucleotide receptors on mast cells, human platelets, and smooth muscle. In: Jacobson KA, Daly JW, Manganiello V Purines in Cellular Signalling: Targets for New Drugs New York; Springer 1990: 254-259
60
Zamecnik P C, Kim B, Gao M J, Taylor G, Blackburn G M.
Analogues of diadenosine 5′,5′″-P1,P4-tetraphosphate (Ap4 A) as potential anti-platelet-aggregation agents.
Proc Natl Acad Sci U S A.
1992;
89
2370-2373
61 King B F. Molecular biology of P2X purinoreceptors. In: Burnstock G, Dobson JG Jr, Liang BT, Linden J Cardiovascular Biology of Purines Boston; Kluwer Academic Publishers 1998: 159-186
62
Bianchi B R, Lynch K J, Touma E et al..
Pharmacological characterization of recombinant human and rat P2X receptor subtypes.
Eur J Pharmacol.
1999;
376
127-138
63
Cinkilic O, King B F, van der Giet M et al..
Selective agonism of group I P2X receptors by dinucleotides dependent on a single adenine moiety.
J Pharmacol Exp Ther.
2001;
299
131-136
64
Lambrecht G, Braun K, Damer M et al..
Structure-activity relationships of suramin and pyridoxal-5′-phosphate derivatives as P2 receptor antagonists.
Curr Pharm Des.
2002;
8
2371-2399
65
Braun K, Rettinger J, Ganso M, Kassack M et al..
NF449: a subnanomolar potency antagonist at recombinant rat P2X1 receptors.
Naunyn Schmiedebergs Arch Pharmacol.
2001;
364
285-290
66
Kassack M U, Braun K, Ganso M et al..
Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist.
Eur J Med Chem.
2004;
39
345-357
67
Kim Y C, Brown S G, Harden T K et al..
Structure-activity relationships of pyridoxal phosphate derivatives as potent and selective antagonists of P2X1 receptors.
J Med Chem.
2001;
44
340-349
68
Brown S G, Kim Y C, Kim S A et al..
Actions of a series of PPADS analogs at P2X1 and P2X3 receptors.
Drug Dev Res.
2001;
53
281-291
69
Surprenant A, Schneider D A, Wilson H L, Galligan J J, North R A.
Functional properties of heteromeric P2X(1/5) receptors expressed in HEK cells and excitatory junction potentials in guinea-pig submucosal arterioles.
J Autonom Nerv Syst.
2000;
81
249-263
70
King B F, Liu M, Pintor J et al..
Diinosine pentaphosphate (IP5 I) is a potent antagonist at recombinant rat P2X1 receptors.
Br J Pharmacol.
1999;
128
981-988
Dr. Kenneth Jacobson
Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
Bldg. 8A, Rm. B1A-19, Bethesda, MD 20892-0810
Email: kajacobs@helix.nih.gov