Abstract
Multiple endocrine neoplasia (MEN) syndromes represent familial disorders characterized by endocrine cell growth and hormone production dysregulation. For several decades, the fibroblast growth factor (FGF) system has been suspected of playing a unique function in MEN-type I (MEN I). However, specific elucidation of these actions has been hampered by the overwhelming redundancy of this complex system. The human FGF family is composed of 22 members organized into 6 groups based on phylogenetic relationships. Signaling is mediated through membrane-spanning tyrosine kinase receptors encoded by four independent genes, some of which generate multiple products via alternative splicing or transcription initiation. High-affinity interaction between an FGF and its cognate receptor induces receptor dimerization and activation. Many FGFs display high-affinity interactions with multiple FGFRs, while some activate unique receptors or receptor isoforms. Most FGFs have demonstrated mitogenic activity in a variety of systems; however, a growing number display predominantly metabolic actions. This review will examine the evidence that FGF/FGFRs play a role in sporadic endocrine neoplasia and the pathways in which these molecules may be selectively targeted for therapeutic purposes.
Key words
FGF - FGF receptors - Pituitary tumors - Pancreatic neuroendocrine tumors
References
1
Asa S L, Ezzat S.
The cytogenesis and pathogenesis of pituitary adenomas.
Endocr Rev.
1998;
19
798-827
2
Alexander J M.
Tumor suppressor loss in pituitary tumors.
Brain Pathol.
2001;
11
342-355
3
Asa S L, Ezzat S.
The pathogenesis of pituitary tumours.
Nat Rev Cancer.
2002;
2
836-849
4
Shimada T, Kakitani M, Yamazaki Y. et al .
Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism.
J Clin Invest.
2004;
113
561-568
5
Givol D, Yayon A.
Complexity of FGF receptors: genetic basis for structural diversity and functional specificity.
FASEB J.
1992;
6
3362-3369
6
Yan G, Wang F, Fukabori Y, Sussman D, Hou J, McKeehan W L.
Expression and transformation of a variant of the heparin-binding fibroblast growth factor receptor (flg) gene resulting from splicing of the exon at alternate 3'-acceptor site.
Biochem Biophys Res Commun.
1992;
183
423-430
7
Peters K G, Werner S, Chen G, Williams L T.
Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse.
Develop.
1992;
114
233-243
8
Crumley G, Bellot F, Kaplow J M, Schlessinger J, Jaye M, Dionne C A.
High-affinity binding and activation of a truncated FGF receptor by both aFGF and bFGF.
Oncogene.
1991;
6
2255-2262
9
Hanneken A, Ying W, Ling N, Baird A.
Identification of soluble forms of the fibroblast growth factor receptor in blood.
Proc Natl Acad Sci USA.
1994;
91
9170-9174
10
Kostrzewa M, Muller U.
Genomic structure and complete sequence of the human FGFR4 gene.
Mamm Genome.
1998;
9
131-135
11
Partanen J, Mäkelä T P, Eerola E. et al .
FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern.
EMBO J.
1991;
10
1347-1354
12
Hughes S E.
Differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal human adult tissues.
J Histochem Cytochem.
1997;
45
1005-1019
13
Yayon A, Aviezer D, Safran M. et al .
Isolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage-epitope library.
Biochemistry.
1993;
90
10 643-10 647
14
Dode C, Levilliers J, Dupont J M, De Paepe A, Le Du N, Soussi-Yanicostas N, Coimbra R S, Delmaghani S, Compain-Nouaille S, Baverel F, Pecheux C, Le Tessier D, Cruaud C, Delpech M, Speleman F, Vermeulen S, Amalfitano A, Bachelot Y, Bouchard P, Cabrol S, Carel J C, Delemarre-van de Waal H, Goulet-Salmon B, Kottler M L, Richard O, Sanchez-Franco F, Saura R, Young J, Petit C, Hardelin J P.
Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome.
Nat Genet.
2003;
33
440-442
15
Weinstein M, Xu X, Ohyama K, Deng C X.
FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung.
Develop.
1998;
125
3615-3623
16
Treier M, Gleiberman A S, O’Connell S M. et al .
Multistep signaling requirements for pituitary organogenesis in vivo.
Genes Dev.
1998;
12
1691-1704
17
Paez-Pereda M, Giacomini D, Refojo D. et al .
Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk.
Proc Natl Acad Sci USA.
2003;
100
1034-1039
18
De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C.
An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis.
Develop.
2000;
127
483-492
19
Celli G, LaRochelle W J, Mackem S, Sharp R, Merlino G.
Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning.
EMBO J.
1998;
17
1642-1655
20
Hardikar A A, Marcus-Samuels B, Geras-Raaka E, Raaka B M, Gershengorn M C.
Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates.
Proc Natl Acad Sci USA.
2003;
100
7117-7122
21
Hart A W, Baeza N, Apelqvist A, Edlund H.
Attenuation of FGF signalling in mouse beta-cells leads to diabetes.
Nature.
2000;
408
864-868
22
Yu C, Wang F, Kan M. et al .
Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4.
J Biol Chem.
2000;
275
15 482-15 489
23
Tomlinson E, Fu L, John L. et al .
Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity.
Endocrinology.
2002;
143
1741-1747
24
Gospodarowicz D, Abraham J A, Schilling J.
Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells.
Proc Natl Acad Sci USA.
1989;
86
7311-7315
25
Ezzat S, Smyth H S, Ramyar L, Asa S L.
Heterogeneous in vivo and in vitro expression of basic fibroblast growth factor by human pituitary adenomas.
J Clin Endocrinol Metab.
1995;
80
878-884
26
Heaney A P, Horwitz G A, Wang Z, Singson R, Melmed S.
Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis.
Nature Medicine.
1999;
5
1317-1321
27
Zimering M B, Katsumata N, Sato Y. et al .
Increased basic fibroblast growth factor in plasma from multiple endocrine neoplasia type 1: Relation to pituitary tumor.
J Clin Endocrinol Metab.
1993;
76
1182-1187
28
Asa S L, Ramyar L, Murphy P R, Li A W, Ezzat S.
The endogenous fibroblast growth factor-2 antisense gene product regulates pituitary cell growth and hormone production.
Mol Endocrinol.
2001;
15
589-599
29
Yu S, Zheng L, Asa S L, Ezzat S.
Fibroblast growth factor receptor 4 (FGFR4) mediates signaling to the prolactin but not the FGFR4 promoter.
Am J Physiol Endocrinol Metab.
2002;
283
E490-E495
30
Yu S, Asa S L, Ezzat S.
Fibroblast growth factor receptor 4 is a target for the zinc-finger transcription factor Ikaros in the pituitary.
Mol Endocrinol.
2002;
16
1069-1078
31
Abbass S AA, Asa S L, Ezzat S.
Altered expression of fibroblast growth factor receptors in human pituitary adenomas.
J Clin Endocrinol Metab.
1997;
82
1160-1166
33
Ezzat S, Zheng L, Zhu X F, Wu G E, Asa S L.
Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis.
J Clin Invest.
2002;
109
69-78
32
Ezzat S, Yu S, Asa S L.
Ikaros isoforms in human pituitary tumors: distinct localization, histone acetylation, and activation of the 5' fibroblast growth factor receptor-4 promoter.
Am J Pathol.
2003;
163
1177-1184
34
Yu S J, Asa S L, Weigel R J, Ezzat S.
Pituitary Tumor AP-2 Recognizes A Cryptic Promoter in Intron 4 of Fibroblast Growth Factor Receptor 4.
J Biol Chem.
2003;
278
19 597-19 602
35
Hirohashi S, Kanai Y.
Cell adhesion system and human cancer morphogenesis.
Cancer Sci.
2003;
94
575-581
36
Christofori G.
Changing neighbours, changing behaviour: cell adhesion molecule-mediated signalling during tumour progression.
EMBO J.
2003;
22
2318-2323
37
Ezzat S, Zheng L, Asa S L.
Tumor-Derived FGFR4 Isoform Disrupts NCAM/N-cadherin Signaling to Diminish Cell Adhesiveness: A Mechanism Underlying Pituitary Neoplasia.
Molecular Endocrinology.
2004;
18
2543-2552
38
Cavallaro U, Schaffhauser B, Christofori G.
Cadherins and the tumour progression: is it all in a switch?.
Cancer Lett.
2002;
176
123-128
39
Bange J, Prechtl D, Cheburkin Y. et al .
Cancer progression and tumor cell motility are associated with the FGFR4 Arg(388) allele.
Cancer Res.
2002;
62
840-847
40
Ezzat S, Zheng L, Yu S, Asa S L.
A soluble dominant negative fibroblast growth factor receptor 4 isoform in human mcf-7 breast cancer cells.
Biochem Biophys Res Commun.
2001;
287
60-65
41
Cavallaro U, Niedermeyer J, Fuxa M, Christofori G.
N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling.
Nat Cell Biol.
2001;
3
650-657
42
Daniel L, Trouillas J, Renaud W. et al .
Polysialylated-neural cell adhesion molecule expression in rat pituitary transplantable tumors (spontaneous mammotropic transplantable tumor in Wistar-Furth rats) is related to growth rate and malignancy.
Cancer Res.
2000;
60
80-85
43
Fujimoto I, Bruses J L, Rutishauser U.
Regulation of cell adhesion by polysialic acid. Effects on cadherin, immunoglobulin cell adhesion molecule, and integrin function and independence from neural cell adhesion molecule binding or signaling activity.
J Biol Chem.
2001;
276
31 745-31 751
44
Conacci-Sorrell M, Zhurinsky J, Ben Ze’ev A.
The cadherin-catenin adhesion system in signaling and cancer.
J Clin Invest.
2002;
109
987-991
45
Heinrich C A, Lail-Trecker M R, Peluso J J, White B A.
Negative regulation of N-cadherin-mediated cell-cell adhesion by the estrogen receptor signaling pathway in rat pituitary GH3 cells.
Endocrine.
1999;
10
67-76
46
Yap A S, Kovacs E M.
Direct cadherin-activated cell signaling: a view from the plasma membrane.
J Cell Biol.
2003;
160
11-16
47
Xu G, Arregui C, Lilien J, Balsamo J.
PTP1B modulates the association of beta-catenin with N-cadherin through binding to an adjacent and partially overlapping target site.
J Biol Chem.
2002;
277
49 989-49 997
48
Lilien J, Arregui C, Li H, Balsamo J.
The juxtamembrane domain of cadherin regulates integrin-mediated adhesion and neurite outgrowth.
J Neurosci Res.
1999;
58
727-734
49
Kinch M S, Clark G J, Der C J, Burridge K.
Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia.
J Cell Biol.
1995;
130
461-471
50
Hoschuetzky H, Aberle H, Kemler R.
Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor.
J Cell Biol.
1994;
127
1375-1380
51
Shibamoto S, Hayakawa M, Takeuchi K. et al .
Tyrosine phosphorylation of beta-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells.
Cell Adhes Commun.
1994;
1
295-305
52
Bonvini P, An W G, Rosolen A. et al .
Geldanamycin abrogates ErbB2 association with proteasome-resistant beta-catenin in melanoma cells, increases beta-catenin-E-cadherin association, and decreases beta-catenin-sensitive transcription.
Cancer Res.
2001;
61
1671-1677
53
Shibata T, Ochiai A, Kanai Y. et al .
Dominant negative inhibition of the association between beta-catenin and c-erbB-2 by N-terminally deleted beta-catenin suppresses the invasion and metastasis of cancer cells.
Oncogene.
1996;
13
883-889
54
Qian Z R, Li C C, Yamasaki H. et al .
Role of E-cadherin, alpha-, beta-, and gamma-catenins, and p120 (cell adhesion molecules) in prolactinoma behavior.
Mod Pathol.
2002;
15
1357-1365
55
Hood J D, Cheresh D A.
Role of integrins in cell invasion and migration. Nat. Rev.
Cancer.
2002;
2
91-100
56
Horacek M J, Kawaguchi T, Terracio L.
Adult adenohypophysial cells express beta 1 integrins and prefer laminin during cell-substratum adhesion.
In Vitro Cell Dev Biol Anim.
1994;
30A
35-40
Dr. S. Ezzat
Princess Margaret Hospital · Pathology - 4-302
610 University Avenue · Toronto · Ontario · Canada · M5G-2M9
Phone: +1 (416) 946-2088
Fax: +1 (416) 586-8834
Email: sezzat@mtsinai.on.ca