References
1a
Khand IU.
Knox GR.
Pauson PL.
Watts WE.
J. Chem. Soc., Chem. Commun.
1971,
36
1b
Khand IU.
Knox GR.
Pauson PL.
Watts WE.
Foreman MI.
J. Chem. Soc., Perkin Trans. 1
1973,
977
2a
Pauson PL.
Tetrahedron
1985,
41:
5855
2b
Schore NE. In
Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.1037
2c
Schore NE.
Org. React.
1991,
40:
1
2d
Schore NE. In
Comprehensive Organometallic Chemistry II
Vol. 12:
Abel EW.
Stone FGA.
Wilkinson G.
Elsevier;
New York:
1995.
p.703
2e
Geis O.
Schmalz H.-G.
Angew. Chem. Int. Ed.
1998,
37:
911
2f
Chung YK.
Coord. Chem. Rev.
1999,
188:
297
2g
Brummond KM.
Kent JL.
Tetrahedron
2000,
56:
3263
2h
Chin CS.
Won G.
Chong D.
Kim M.
Lee H.
Acc. Chem. Res.
2002,
35:
218
2i
Gibson SE.
Mainolfi N.
Angew. Chem. Int. Ed.
2005,
44:
3022
3
Magnus P.
Principle LM.
Tetrahedron Lett.
1985,
26:
4581
4a
Krafft ME.
J. Am. Chem. Soc.
1988,
110:
968
4b
Krafft ME.
Juliano CA.
Scott IL.
Wright C.
McEachin MD.
J. Am. Chem. Soc.
1991,
113:
1693
4c
Krafft ME.
Juliano CA.
J. Org. Chem.
1992,
57:
5106
4d See also: Krafft ME.
Tetrahedron Lett.
1988,
29:
999
5a
Waszkuć W.
Janecki T.
Org. Biomol. Chem.
2003,
1:
2966
5b
Janecki T.
Wąsek T.
Tetrahedron
2004,
60:
1049
5c
Baszczyk E.
Krawczyk H.
Janecki T.
Synlett
2004,
2685
6a
Shambayati S.
Crowe WE.
Schreiber SL.
Tetrahedron Lett.
1990,
31:
5289
6b
Jeong N.
Chung YK.
Lee BY.
Lee SH.
Yoo S.-E.
Synlett
1991,
204
6c
Gordon AR.
Johnstone C.
Kerr WJ.
Synlett
1995,
1083
6d
Donkervoort JG.
Gordon AR.
Johnstone C.
Kerr WJ.
Lange U.
Tetrahedron
1996,
52:
7391
7
Sugihara T.
Yamada M.
Ban H.
Yamaguchi M.
Kaneko C.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2801
8a
Sugihara T.
Yamada M.
Yamaguchi M.
Nishizawa M.
Synlett
1999,
771
See also:
8b
Kerr WJ.
Lindsay DM.
McLaughlin M.
Pauson PL.
Chem. Commun.
2000,
1467
8c
Brown JA.
Kerr WJ.
Irvine S.
Pearson CM.
Org. Biomol. Chem.
2005,
3:
2396
9
Chung YK.
Lee BY.
Jeong N.
Hudecek M.
Pauson PL.
Organometallics
1993,
12:
220
10
General Experimental Procedure.
A 250-mL three-necked round-bottomed flask was flame dried under vacuum and allowed to cool under nitrogen prior to being fitted with a reflux condenser. The entire system was then purged three times with nitrogen gas. The vessel was charged with dry CH2Cl2 (5.0 mL), dry MeCN (5.0 mL), and diethyl allylphosphonate (1.0 mmol). The reaction mixture was heated slowly to reflux at which time a solution of the desired cobalt complex (0.5 mmol) in dry CH2Cl2 (10.0 mL) was added over 8 h via syringe pump. Following complete addition, heating was continued at reflux for 10 h. After this time, the mixture was concentrated to dryness, dissolved in EtOAc, and filtered through Celite to remove cobalt residues. The filtrate was concentrated and the resultant oil distilled under vacuum to remove any excess alkene starting material. The residue was then purified by silica column to yield the desired regioisomeric cyclopentenones. The ratio of these regioisomers was determined by 1H NMR. Sample data:
Diethyl (2-oxo-3-phenylcyclopent-3-enyl)methylphos-phonate (3): IR (CH2Cl2): ν = 1027, 1054, 1133, 1247, 1447, 1494, 1598, 1704 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.34 (t, 3 H,
³
J
HH
= 7.1 Hz), 1.36 (t, 3 H,
³
J
HH
= 7.1 Hz), 1.73 (ddd, 1 H,
²
J
PH
= 16.6 Hz,
²
J
HH
= 15.5 Hz,
³
J
HH
= 11.7 Hz), 2.54 (ddd, 1 H,
²
J
PH
= 18.2 Hz,
²
J
HH
= 15.5 Hz,
³
J
HH
= 2.9 Hz), 2.71 (dt, 1 H,
²
J
HH
= 19.8 Hz,
³
J
HH
= 2.8 Hz), 2.77-2.87 (m, 1 H), 3.08 (ddd, 1 H,
²
J
HH
= 19.8 Hz,
³
J
HH
= 6.8 Hz,
³
J
HH
= 3.2 Hz), 4.08-4.23 (m, 4 H), 7.32-7.42 (m, 3 H), 7.68-7.73 (m, 2 H), 7.83 (dd, 1 H,
³
J
HH
= 3.2 Hz,
³
J
HH
= 2.8 Hz) ppm. 13C NMR (100 MHz, CDCl3): δ = 207.4, 157.7, 142.3, 131.4, 128.8, 128.7, 127.2, 62.0, 41.5, 34.0, 27.3, 16.7 ppm. 31P NMR (162 MHz, CDCl3): δ = 30.87 ppm. HRMS (EI): m/z calcd for C16H22O4P [M+ + H]: 309.1250; found: 309.1247. Anal. Calcd for C16H21O4P: C, 62.33; H, 6.87; P, 10.05. Found: C, 62.21; H, 6.82; P, 9.90.
Diethyl (4-oxo-3-phenylcyclopent-2-enyl)methylphos-phonate (4): 1H NMR (400 MHz, CDCl3): δ = 1.35 (t, 3 H,
³
J
HH
= 7.1 Hz), 1.37 (t, 3 H,
³
J
HH
= 7.1 Hz), 1.97 (ddd, 1 H,
²
J
PH
= 17.8 Hz,
²
J
HH
= 15.2 Hz,
³
J
HH
= 8.3 Hz), 2.05 (ddd, 1 H,
²
J
PH
= 18.1 Hz,
²
J
HH
= 15.2 Hz,
³
J
HH
= 6.6 Hz), 2.44 (dd, 1 H,
²
J
HH
= 19.0 Hz,
³
J
HH
= 2.5 Hz), 2.92 (dd, 1 H,
²
J
HH
= 19.0 Hz,
³
J
HH
= 6.7 Hz), 3.26-3.38 (m, 1 H), 4.08-4.19 (m, 4 H) 7.32-7.45 (m, 3 H), 7.68-7.73 (m, 2 H), 7.82 (d, 1 H,
³
J
HH
= 2.6 Hz) ppm. 31P NMR (162 MHz, CDCl3): δ = 29.14 ppm.
Isomer 3 was identified as the major product by its characteristic 1H NMR resonances at δ = 2.71, 3.08, and 7.83 ppm. The splitting and coupling constants associated with these signals is indicative of structure 3. This can be compared with the corresponding 1H NMR resonances for compound 4 at δ = 2.44, 2.92, and 7.82 ppm. The ratio of 3:4 in the unseparated mixture was established from the relative integral values of the signals at δ = 2.77-2.87 ppm (in 3) and δ = 3.26-3.38 ppm (in 4). All other regioisomeric ratios were established in a similar fashion.