Abstract
Novel vitamin D receptor antagonists, 24,24-ethanovitamin D3 -26,23-lactones 6 and 7 and their 2α-functionalized analogues 6a -c and 7a -c were synthesized and their biological activities were evaluated. The triene structure of vitamin D3 was constructed using Pd-catalyzed alkenylative cyclization of A-ring precursor enynes 12 and 12a -c with the CD-ring bromo-olefin counterpart having 24,24-ethano-α-methylene-γ-lactone on the side chain (21 or 22 ). The CD-ring precursors 21 and 22 were efficiently synthesized via Ru-catalyzed intermolecular enyne metathesis of 15 with ethylene to give dienone 17 followed by cyclopropanation. The VDR antagonistic activity of the newly designed vitamin D3 lactones 6 and 7 increased to 2.8 times that of TEI-9647 (2 ) in a HL-60 cell differentiation evaluating system. Moreover, introduction of three substituents, that is, a methyl (6a and 7a ), a 3-hydroxypropyl (6b and 7b ), or a 3-hydroxypropoxyl group (6c and 7c ) into the C2α position of 6 and 7 , resulted in marked enhancement, up to 19 times, of the antagonistic activity toward VDR.
Key words
vitamins - antagonist - lactones - ruthenium - metathesis - enynes
References
1a
Vitamin D
Feldman D.
Glorieux FH.
Pike JW.
Academic Press;
New York:
1997.
1b
Ettinger RA.
DeLuca HF.
Adv. Drug Res.
1996,
28:
269
2
Bouillon R.
Okamura WH.
Norman AW.
Endocr. Rev.
1995,
16:
200
3a
Evans RM.
Science
1988,
240:
889
3b
Umezono K.
Murakami KK.
Thompson CC.
Evans RM.
Cell
1991,
65:
1255
4
Takeyama K.
Masuhiro Y.
Fuse H.
Endoh H.
Murayama A.
Kitanaka S.
Suzawa M.
Yanagisawa J.
Kato S.
Mol. Cell Biol.
1999,
19:
1049
5a
Konno K.
Maki S.
Fujishima T.
Liu Z.
Miura D.
Chokki M.
Takayama H.
Bioorg. Med. Chem. Lett.
1998,
8:
151
5b
Konno K.
Fujishima T.
Maki S.
Liu Z.
Miura D.
Chokki M.
Ishizuka S.
Yamaguchi K.
Kan Y.
Kurihara M.
Miyata N.
Smith C.
DeLuca HF.
Takayama H.
J. Med. Chem.
2000,
43:
4247
6a
Suhara Y.
Nihei K.
Tanigawa H.
Fujishima T.
Konno K.
Nakagawa K.
Okano T.
Takayama H.
Bioorg. Med. Chem. Lett.
2000,
10:
1129
6b
Suhara Y.
Nihei K.
Kurihara M.
Kittaka A.
Yamaguchi K.
Fujishima T.
Konno K.
Miyata N.
Takayama H.
J. Org. Chem.
2001,
66:
8760
7a
Kittaka A.
Suhara Y.
Takayanagi H.
Fujishima T.
Kurihara M.
Takayama H.
Org. Lett.
2000,
2:
2619
7b
Saito N.
Suhara Y.
Kurihara M.
Fujishima T.
Honzawa S.
Takayanagi H.
Kozono T.
Matsumoto M.
Ohmori M.
Miyata N.
Takayama H.
Kittaka A.
J. Org. Chem.
2004,
69:
7463
8 For our account, see: Takayama H.
Kittaka A.
Fujishima T.
Suhara Y.
Vitamin D Analogs in Cancer Prevention and Therapy, Recent Results in Cancer Research
Vol. 164:
Reichrath J.
Friedrich M.
Tilgen W.
Springer-Verlag;
Berlin:
2003.
p.289
This concept was also good for 1α,25-dihydroxy-19-norvitamin D3 , see:
9a
Ono K.
Yoshida A.
Saito N.
Fujishima T.
Honzawa S.
Suhara Y.
Kishimoto S.
Sugiura T.
Waku K.
Takayama H.
Kittaka A.
J. Org. Chem.
2003,
68:
7407
9b
Yoshida A.
Ono K.
Suhara Y.
Saito N.
Takayama H.
Kittaka A.
Synlett
2003,
1175
10a
Miura D.
Manabe K.
Ozono K.
Saito M.
Gao Q.
Norman AW.
Ishizuka S.
J. Biol. Chem.
1999,
274:
16392
10b
Ozono K.
Saito M.
Miura D.
Michigami T.
Nakajima S.
Ishizuka S.
J. Biol. Chem.
1999,
274:
32376
10c
Miura D.
Manabe K.
Gao Q.
Norman AW.
Ishizuka S.
FEBS Lett.
1999,
460:
297
10d
Ishizuka S.
Miura D.
Eguchi H.
Ozono K.
Chokki M.
Kamimura T.
Norman AW.
Arch. Biochem. Biophys.
2000,
380:
92
10e
Ishizuka S.
Miura D.
Ozono K.
Chokki M.
Mimura H.
Norman AW.
Endocrinol.
2001,
142:
59
10f
Ishizuka S.
Miura D.
Ozono K.
Saito M.
Eguchi H.
Chokki M.
Norman AW.
Steroids
2001,
66:
227
11 For a recent report on the other type of VDR antagonist of 25-carboxylic esters ZK159222 and ZK168281, see: Väisänen S.
Peräkylä M.
Kärkkäinen JI.
Steinmeyer A.
Carlberg C.
J. Mol. Biol.
2002,
315:
229
12a
Ishizuka S.
Ishimoto S.
Norman AW.
Biochemistry
1984,
23:
1473
12b
Ishizuka S.
Ohba T.
Norman AW.
Vitamin D: Molecular, Cellular and Chemical Endocrinology
Norman AW.
Schaefer K.
Grigoleit HG.
von Herrath D.
Walter de Gruyter;
Berlin:
1988.
p.143
13a
Carlberg C.
J. Cell. Biochem.
2003,
88:
274
13b
Toell A.
Gonzalez MM.
Ruf D.
Steinmeyer A.
Ishizuka S.
Carlberg C.
Mol. Pharmacol.
2001,
59:
1478
14a
Saito N.
Matsunaga T.
Fujishima T.
Anzai M.
Saito H.
Takenouchi K.
Miura D.
Ishizuka S.
Takayama H.
Kittaka A.
Org. Biomol. Chem.
2003,
1:
4396
14b
Saito N.
Saito H.
Anzai M.
Yoshida A.
Fujishima T.
Takenouchi K.
Miura D.
Ishizuka S.
Takayama H.
Kittaka A.
Org. Lett.
2003,
5:
4859
14c
Saito N.
Masuda M.
Matsunaga T.
Saito H.
Anzai M.
Takenouchi K.
Miura D.
Ishizuka S.
Takimoto-Kamimura M.
Kittaka A.
Tetrahedron
2004,
60:
7951
15
Wiggins LS.
Methods Carbohydr. Chem.
1963,
2:
181
16
Taillefumier C.
Chapleur Y.
Can. J. Chem.
2000,
78:
708
17 Previously, the enyne 12 was prepared through Sharpless asymmetric dihydroxylation of 3-butenyl 4-methoxyphenyl ether: Fujishima T.
Konno K.
Nakagawa K.
Kurobe M.
Okano T.
Takayama H.
Bioorg. Med. Chem.
2000,
8:
123
18 The original works of Ru-catalyzed intermolecular enyne metathesis, see: Kinoshita A.
Sakakibara N.
Mori M.
J. Am. Chem. Soc.
1997,
119:
12388
19a
Scholl M.
Ding S.
Lee CW.
Grubbs RH.
Org. Lett.
1999,
1:
953
19b
Garber SB.
Kingsbury JS.
Gray BL.
Hoveyda AH.
J. Am. Chem. Soc.
2000,
122:
8168
19c
Wakamatsu H.
Blechert S.
Angew. Chem. Int. Ed.
2002,
41:
2403
19d instability of 15 and 16d at r.t. would cause low yield of 17 and low recovery of 15 .
20 Crystal data of 20 are as follows: C21 H34 BrO2 , space group P 21 21 21 , Z = 4, a = 7.785 (6), b = 9.445 (9), c = 27.35 (2) Å, V = 2010 (2) Å3 , Dcalcd = 1.313 g/cm3 , R 1 = 0.063 for 16610 reflections [I > 3.00s (I)], wR 2 = 0.068 [I > 3.00s (I)]; structure solution and refinement were performed using Direct Methods (SIR92) and full-matrix least-squares on F, respectively. Diffractometer Rigaku RAXIS-RAPID, graphite monochlomated CuKα (λ = 1.54187 Å).
21
Trost BM.
Dumas J.
Villa M.
J. Am. Chem. Soc.
1992,
114:
9836
22a
Eisman JA.
Hamstra AJ.
Kream BE.
DeLuca HF.
Arch. Biochem. Biophys.
1976,
176:
235
22b
Inaba M.
DeLuca HF.
Biochim. Biophys. Acta
1989,
1010:
20
23
Collins SJ.
Ruscetti FW.
Gallagher RE.
Gallo RC.
J. Exp. Med.
1979,
149:
969
24a
Suhara Y.
Kittaka A.
Kishimoto S.
Calverly MJ.
Fujishima T.
Saito N.
Sugiura T.
Waku K.
Takayama H.
Bioorg. Med. Chem. Lett.
2002,
12:
3255
24b
Honzawa S.
Yamamoto Y.
Hirasaka K.
Takayama H.
Kittaka A.
Heterocycles
2003,
61:
327
24c
Honzawa S.
Suhara Y.
Nihei K.
Saito N.
Kishimoto S.
Fujishima T.
Kurihara M.
Sugiura T.
Waku K.
Takayama H.
Kittaka A.
Bioorg. Med. Chem. Lett.
2003,
13:
3503
25 For an excellent description of the VDR-generated transactivation mechanism, see: Masuno H.
Yamamoto K.
Wang X.
Choi M.
Ooizumi H.
Shinki T.
Yamada S.
J. Med. Chem.
2002,
45:
1825
Recent reviews on the function of VDR in response to 1 and other synthetic ligands, see:
26a
Carlberg C. In Vitamin D Analogs in Cancer Prevention and Therapy, Recent Results in Cancer Research
Vol. 164:
Reichrath J., Friedrich M., Tilgen M., Eds., Springer;
Berlin:
2003.
p.29
26b
Carlberg C.
J. Steroid Biochem. Mol. Biol.
2004,
89-90:
227 ; see also ref. 13
27
Bula CM.
Bishiop JE.
Ishizuka S.
Norman AW.
Mol. Endocrinol.
2000,
14:
1788
28a
Ochiai E.
Miura D.
Eguchi H.
Takenouchi K.
Harada Y.
Azuma Y.
Kamimura T.
Ishizuka S.
J. Bone. Miner. Res.
2003,
18 (suppl. 2):
S103
28b
Ochiai E.
Miura D.
Eguchi H.
Ohara S.
Takenouchi K.
Harada Y.
Azuma Y.
Kamimura T.
Norman AW.
Ishizuka S.
Mol. Endocrinol.
2005,
19:
1147
29
Peräkylä M.
Molnár F.
Carlberg C.
Chem. Biol.
2004,
11:
1147
30
Takenouchi K.
Sogawa R.
Manabe K.
Saitoh H.
Gao Q.
Miura D.
Ishizuka S.
J. Steroid Biochem. Mol. Biol.
2004,
89-90:
31
31 It is well known that some biologically active natural products having an α-methylene-γ-lactone structure react with the thiol group of cysteine to give the corresponding cysteine adduct: Kupchan SM.
Fessler DC.
Eakin MA.
Giacobbe TJ.
Science
1970,
168:
376
For recent reviews on Paget"s bone disease, see:
32a
Reddy SV.
J. Cell Biochem.
2004,
93:
688
32b
Roodman GD.
Windle JJ.
J. Clin. Invest.
2005,
115:
200
33
Wender PA.
Sieburth S.
Petraitis JJ.
Singh SK.
Tetrahedron
1981,
37:
1967