References
1a
Nakamura I.
Yamamoto Y.
Chem. Rev.
2004,
104:
2127
1b
Tsuji J.
Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis
Wiley;
New York:
2002.
1c
Minami I.
Yuhara M.
Watanabe H.
Tsuji J.
J. Organomet. Chem.
1987,
334:
225 ; and references cited therein
2a
Zeni G.
Larock RC.
Chem. Rev.
2004,
104:
2285
2b
Widenhoefer RA.
Acc. Chem. Res.
2002,
35:
905
2c
Tan Z.
Negishi E.-i.
Handbook of Organopalladium Chemistry for Organic Synthesis
Vol 1:
John Wiley and Sons;
New York:
2002.
p.863-942
3a
Muzart J.
Tetrahedron
2003,
59:
5789
3b
Gibson SE.
Jones JO.
Kalindjian SB.
Knight JD.
Mainolfi N.
Rudd M.
Steed JW.
Tozer MJ.
Wright PT.
Tetrahedron
2004,
60:
6945
3c
Tobrman T.
Dvorak D.
Tetrahedron Lett.
2004,
45:
273
3d
Arcadi A.
Bernocchi E.
Cacchi S.
Marinell F.
Scarinci A.
Synlett
1991,
177
3e
Ganchegui B.
Bouquillon S.
Henin F.
Muzart J.
J. Mol. Catal. A: Chem.
2004,
214:
65
3f
Wavrin L.
Nicolas C.
Viala J.
Rodriguez J.
Synlett
2004,
1820
4a
Trost BM.
Dumas J.
Villa M.
J. Am. Chem. Soc.
1992,
114:
9836
4b
Danishefsky SJ.
Masters JJ.
Young WB.
Link JT.
Snyder LB.
Magee TV.
Jung DK.
Isaacs RCA.
Bornmann WG.
Alaimo CA.
Coburn CA.
Di Grandi MJ.
J. Am. Chem. Soc.
1996,
118:
2843
4c
Hong CY.
Kado N.
Overman LE.
J. Am. Chem. Soc.
1993,
115:
11028
4d
Tietze LF.
Evers H.
Topken E.
Angew. Chem. Int. Ed.
2001,
40:
903
4e
Nicolaou KC.
Gray DLF.
Tae J.
J. Am. Chem. Soc.
2004,
126:
613
4f
Willmore ND.
Goodman R.
Lee HH.
Kennedy RM.
J. Org. Chem.
1992,
57:
1216
5a
Belestkaya IP.
Chheprakov AV.
Chem. Rev.
2000,
100:
3009
5b
Grigg R.
Millington EL.
Thornton-Pett M.
Tetrahedron Lett.
2002,
43:
2605
5c
Oestreich M.
Dennison PR.
Kodanko JJ.
Overman LE.
Angew. Chem. Int. Ed.
2001,
40:
1439
5d
Balme G.
Bouyssi D.
Lomberget T.
Monteiro N.
Synthesis
2003,
2115
5e
Link J.
Org. React.
2002,
60:
157
5f
Smith AB.
Jerris PJ.
J. Am. Chem. Soc.
1981,
103:
194
6
Mal SK.
Ray D.
Ray JK.
Tetrahedron Lett.
2004,
45:
277
7
General Procedure for the Palladium-Catalyzed Cyclization.
The appropriate homoallylated or propargylated β-bromo-vinylalcohols, Pd(OAc)2 (10 mol%), PPh3 (0.25 equiv), base (1 equiv)[HCOONa (1 equiv) for propargylated compound only] and DMF (6-8 mL) were placed in a two-neck round-bottom flask. After degassing with N2 the mixture was heated to 70 °C for 4 h. After cooling, the reaction mixture was diluted with cold H2O and extracted with Et2O (4 × 25 mL), and dried (Na2SO4). The solvent was evaporated, and the product was isolated by column chromatography (PE-EtOAc 9:1).
8
General Procedure for Propargylation.
A mixture of β-bromo vinylaldehyde (1 mmol), propargyl bromide (1.3 mmol), indium metal (SRL, India) (1.2 mmol), NaI (3 mmol) in DMF (4-5 mL) was stirred at 0 °C until completion of the reaction (checked by TLC). The reaction mixture was quenched with aq NH4Cl solution diluted with H2O and extracted with Et2O (3 × 25 mL). The solvent was removed at r.t. under vacuum.
9a
Burns B.
Grigg R.
Sridharan V.
Worakun T.
Tetrahedron Lett.
1988,
29:
4325
9b
Nuss JM.
Levine BH.
Rennels RA.
Heravi MM.
Tetrahedron Lett.
1991,
32:
5243
For mechanistic studies on palladium-catalyzed transformations using phosphine ligands see:
10a Alcazar Roman L. M., Hartwig J. F.; Organometallics; 2002, 21: 491
10b Roy A. H., Hartwig J. F.; J. Am. Chem. Soc.; 2001, 123: 1232
10c
Alcazar Roman LM.
Hartwig JF.
Rheingold AL.
Liable-Sands LM.
Guzei IA.
J. Am. Chem. Soc.
2000,
122:
4618
10d
Elsevier CJ.
Kleijn H.
Boersma J.
Vermeer P.
Organometallics
1986,
5:
716
10e
Wojcicki A.
New J. Chem.
1994,
18:
61
10f
Kurosawa H.
Ogoshi S.
Bull. Chem. Soc. Jpn.
1998,
71:
973
10g
Casey CP.
Boller TM.
Kraft S.
Guzei IA.
J. Am. Chem. Soc.
2002,
124:
13215
10h
Tsutsumi K.
Ogoshi S.
Nishiguchi S.
Kurosawa H.
J. Am. Chem. Soc.
1998,
120:
1938
10i
Baize MW.
Blosser PW.
Plantevin V.
Schimpff DG.
Gallucci JC.
Wojcicki A.
Organometallics
1996,
15:
164
10j
Casey CP.
Nash JR.
Yi CS.
Selmeczy AD.
Chung S.
Powell DR.
Hayashi RK.
J. Am. Chem. Soc.
1998,
120:
722
11
Spectral Data of Representative Compounds.
7-Methoxy-9-methylene-8,9-dihydro-7
H
-cyclopenta[
a
]acenaphthylene (II):
1H NMR (200 MHz, C6D6): δ = 3.01-3.16 (m, 2 H), 3.20 (s, 3 H), 4.48 (dd, 1 H, J = 2.87 Hz, J = 2.96 Hz), 5.02 (br s, 1 H), 5.49 (br s, 1 H), 7.20-7.31 (m, 3 H), 7.45-7.60 (m, 3 H). Anal Calcd for C17H14O: C, 87.15; H, 6.02. Found: C, 88.25; H, 5.92.
3-Methyl-3,4,5,6,7,8-hexahydro-2
H
-azulen-1-one (
3d):
IR (CHCl3): νmax = 1685 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.15 (d, 3 H, J = 6.96 Hz), 1.42-1.67 (m, 6 H), 1.73-1.83 (m, 4 H), 2.26-2.58 (m, 2 H), 2.67-2.7 (m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 18.98, 23,09, 26.33, 26.50, 31.13, 31.42, 37.04, 43.13, 141.72, 181.02, 208.11. MS (EI, 70 eV): m/z = 164 [M+]. Anal Calcd for C11H16O: C, 80.44; H, 9.82. Found: C, 80.65; H, 9.62.
10-Methyl-9,10-dihydro-8
H
-fluoranthen-7-one (
6b):
IR (CHCl3): νmax = 1660 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.55 (d, 3 H, J = 7.12 Hz), 2.06-2.09 (m, 1 H), 2.39-2.78 (m, 3 H), 3.39-3.45 (m, 1 H), 7.53 (m, 2 H), 7.79 (d, 1 H, J = 8.20 Hz), 7.92-7.98 (m, 2 H), 8.26 (d, 1 H, J = 6.79 Hz). 13C NMR (75 MHz, CDCl3): δ = 20.38, 29.19, 31.32, 35.68, 126.11, 126.21, 126.96, 127.54, 128.41, 128.66, 130.86, 136.81, 161.66, 196.89. MS (EI, 70 eV): m/z = 234 [M+]. Anal Calcd for C17H14O: C, 87.15; H, 6.02. Found: C, 86.92; H, 5.93.