Abstract
We found that the spacer and additive play a significant role in the oxidation of alkyl alcohols using polymer-supported IBX-amide reagents. The introduction of the spacer between the polymer support and IBX-amide group improved the initial conversion rate (up to 60% conversion). Furthermore, various alcohol compounds, when reacted with IBX-amide resin in the presence of BF3 ·OEt2 , were effectively converted into the corresponding aldehydes or ketones within 5-30 minutes in high purities (>94%) at room temperature.
Key words
spacer - additive - IBX-amide resin
References
1a
McNamara CA.
Dixon MJ.
Bradley M.
Chem. Rev.
2002,
102:
3275
1b
Hodge P.
Curr. Opin. Chem. Biol.
2003,
7:
362
2a
Bhattacharyya S.
Comb. Chem. High Throughput Screening
2000,
3:
65
2b
Patchornik AH.
Polym. Adv. Technol.
2002,
13:
1078
2c
Nam N.-H.
Sardari S.
Parang K.
J. Comb. Chem.
2003,
5:
479
3a
Hudlicky M.
Oxidation in Organic Chemistry
American Chemical Society;
Washington, DC:
1990.
p.114-163
3b
Lou JD.
Lou WX.
Synth. Commun.
1997,
27:
3697
3c
Mirafzal GA.
Lozera M.
Tetrahedron Lett.
1998,
39:
7263
4a
Fréchet JMJ.
Darling P.
Farrall MJ.
J. Org. Chem.
1981,
46:
1728
4b
Mohanazadeh F.
Ghamsari S.
React. Funct. Polym.
1996,
29:
193
4c
Hinzen B.
Ley SV.
J. Chem. Soc., Perkin Trans. 1
1997,
1907
4d
Kessat A.
Babadjamian A.
Iraqi A.
Eur. Polym. J.
2001,
37:
131
4e
Tamami B.
Karimi Zarchi MA.
Eur. Polym. J.
1995,
31:
715
5a
Mülbaier M.
Giannis A.
Angew. Chem. Int. Ed.
2001,
40:
4393
5b
Sorg G.
Mengel A.
Jung G.
Rademann J.
Angew. Chem. Int. Ed.
2001,
40:
4395
5c
Reed NN.
Delgado M.
Hereford K.
Clapham B.
Janda KD.
Bioorg. Med. Chem. Lett.
2002,
12:
2047
5d
Lei Z.
Denecker C.
Jegasothy S.
Sherrington DC.
Slater NKH.
Sutherland AJ.
Tetrahedron Lett.
2003,
44:
1635
6
Chung W.-J.
Kim D.-K.
Lee Y.-S.
Tetrahedron Lett.
2003,
44:
9251
7
Zhdankin VV.
Litvinov DN.
Koposov AY.
Luu T.
Ferguson MJ.
McDonald R.
Tykwinski RR.
Chem. Commun.
2004,
106
8a
Moriarty RM.
Vaid RK.
Ravikumar VT.
Vaid BK.
Hopkins TE.
Tetrahedron Lett.
1988,
44:
1603
8b
Ochiai M.
Miyamoto K.
Shiro M.
Ozawa T.
Yamaguchi K.
J. Am. Chem. Soc.
2003,
125:
13006
9
Shukla VG.
Salgaonkar PD.
Akamanchi KG.
J. Org. Chem.
2003,
68:
5422
10 Swelling volume was determined using a column (ID 0.9 cm, length 40 cm) with sintered glass filter. Each resin (500 mg) was swollen in CHCl3 for 2 h. Thereafter, the solvent was removed by filtration, and the swelling volume of each resin was determined as: resin 1 (4.2 mL/g); resin 2 (3.9 mL/g); resin 3 (3.4 mL/g); resin 4 (3.8 mL/g).
11 Oxidation of 1-decanol (1 equiv) was performed using IBX-amide resin 1 (1.3 equiv) with N -methyl hexanamide (1.3 equiv) in CHCl3 at r.t. The reaction mixture was analyzed by GC-MS after 3 h and 6 h. The conversion of 1-decanol was compared with that from the oxidation of 1-decanol without N -methyl hexanamide (NMH) under the same condition; 37% (with NMH) and 34% (without NMH) after 3 h, 43% (with NMH) and 44% (without NMH) after 6 h. No reaction between NMH and IBX-amide resin 1 was detected.
12a
Tohma H.
Takizawa S.
Watanabe H.
Kita Y.
Tetrahedron Lett.
1998,
39:
4547
12b
Tohma H.
Maegawa T.
Takizawa S.
Kita Y.
Adv. Synth. Catal.
2002,
344:
328
13
Soulard M.
Block F.
Hatterer A.
J. Chem. Soc., Dalton. Trans.
1981,
2300
14
Kim D.-K.
Chung W.-J.
Lee Y.-S.
Synlett
2005,
279
15 Three cycles of oxidations with the condition employed in entry 1 (in Table
[1 ]
) and reactivations were investigated. The oxidation capacity was maintained in the range of 0.55-0.59 mmol/g. The conversions of 1-decanol were determined as >97 (run 1), >97 (run 2), and 95% (run 3).
16
Kaiser E.
Colescott RLC.
Bossinger D.
Cook PI.
Anal. Biochem.
1970,
34:
595