References
For recent reviews on the chemistry of N-acyliminiun ions, see:
1a
Speckamp WN.
Moolenaar MJ.
Tetrahedron
2000,
56:
3817 ; and references cited therein
1b
Pilli RA.
Rosso GB.
Methods of Molecular Transformations, In Science of Synthesis (Houben-Weyl)
Vol. 27:
Padwa A.
Thieme;
Stuttgart:
2004.
p.375
2a
Russowsky D.
Petersen RZ.
Godoi MN.
Pilli RA.
Tetrahedron Lett.
2000,
41:
9939
2b
Camilo NS.
Pilli RA.
Tetrahedron Lett.
2004,
45:
2821
3
Andrade CKZ.
Matos RAF.
Synlett
2003,
1189
4
Kobayashi S.
Sugiura M.
Kitagawa H.
Chem. Rev.
2002,
102:
2227
5
Chini M.
Crotti P.
Gardelli C.
Minutolo F.
Pineschi M.
Gazz. Chim. Ital.
1993,
123:
673
6
Ho M.
Chung JKK.
Tang N.
Tetrahedron Lett.
1993,
34:
6513
7
Fortin R.
Brochu C.
Tetrahedron Lett.
1994,
35:
9681
8
Zhu X.
Ganesan A.
J. Org. Chem.
2002,
67:
2705
9
Bandini M.
Cozzi PG.
de Angelis M.
Umani-Ronchi A.
Tetrahedron Lett.
2000,
41:
1601
10
Murakata M.
Tsutsui H.
Hoshino O.
Org. Lett.
2001,
3:
299
11
Ishimaru K.
Kojima T.
J. Org. Chem.
2003,
68:
4959
12a
Frantz DE.
Fässler R.
Carreira EM.
J. Am. Chem. Soc.
1999,
121:
11245
12b
Frantz DE.
Fässler R.
Carreira EM.
J. Am. Chem. Soc.
2000,
122:
1806
12c
Boyall D.
Lopez F.
Sasaki H.
Carreira EM.
Org. Lett.
2000,
2:
4233
12d
Sasaki H.
Boyall D.
Carreira EM.
Helv. Chim. Acta
2001,
84:
964
12e
El-Sayed E.
Anand NK.
Carreira EM.
Org. Lett.
2001,
3:
3017
12f
Anand NK.
Carreira EM.
J. Am.Chem. Soc.
2001,
123:
9687
12g
Boyall D.
Frantz DE.
Carreira EM.
Org. Lett.
2002,
4:
2605
12h
Diez RS.
Adger B.
Carreira EM.
Tetrahedron
2002,
58:
8341
12i
Fässler R.
Frantz DE.
Ötiker J.
Carreira EM.
Angew. Chem. Int. Ed.
2002,
41:
3054
12j
Reber S.
Knöpfel TF.
Carreira EM.
Tetrahedron
2003,
59:
6813
13 The allylation reactions and the addition of silyl enol ethers to N-acyl iminium ion precursors using Zn(OTf)2 gave comparable yields to those obtained when BF3·OEt2 was employed.
14a
Pilli RA.
Böckelmann MA.
Alves CF.
J. Braz. Chem. Soc.
2001,
12:
634
14b
D’Oca MGM.
Moraes LAB.
Pilli RA.
Eberlin MN.
J. Org. Chem.
2001,
66:
3854
15 For clarity, only the structures of the major diastereoisomers erythro-20 and erythro-21 are depicted in Table
[3]
. Data for erythro-20, see ref. 2b.
Data for erythro-21: 1H NMR (CDCl3, 298 K): δ = 1.13 (d, J = 6.95 Hz, 3 H), 1.30-1.70 (s, 6 H); 1.50 (s, 9 H), 2.65-2.79 (s, 1 H), 4.02-4.23 (m, 2 H), 4.69-4.82 (s, 1 H), 7.50-7.60 (m, 3 H), 7.99 (d, J = 6.95 Hz, 2 H). 13C NMR (CDCl3, 298 K): δ = 15.4, 19.6, 25.4, 27.6, 28.5, 38.8, 39.3, 53.0, 79.8, 128.4, 129.0, 133.5, 137.1, 155.6, 203.5. IR (KBr, film): 2974, 2933, 1685, 1415, 1365, 1170, 1147, 968 cm-1. Anal. Calcd for C19H27NO3: C, 71.92; H, 8.51; N, 4.41. Found: C, 71.59; H, 8.24; N, 4.37.
16
Carreira EM.
Fischer C.
Org. Lett.
2004,
6:
1497
17
Representative Procedure.
To a suspension of Zn(OTf)2 (0.24 mmol) in dry CH2Cl2 (1 mL) at r.t. was added a substrate 3b (0.20 mmol), diluted in dry CH2Cl2 (1 mL). After 10 min, allyltrimetylsilane (4, 0.40 mmol) was added. The mixture was stirred 3 h at r.t. and quenched with sat. NaHCO3 (2 mL), extracted with CH2Cl2 (2 × 5 mL), dried with anhyd Na2SO4. After filtration, the solvent was evaporated under reduced pressure and the residue was chromatographed on silica gel (5% MeOH in CHCl3) to afford 5 in 78% yield.
Data for compound 5: 1H NMR (300 MHz, CDCl3): δ = 1.74 (m, 1 H), 2.14 (m, 2 H), 2.34 (m, 3 H), 3.68 (m, 2 H), 4.60 (d, J = 15.8 Hz, 1 H), 5.10 (s, 1 H), 5.12 (d, J = 15.8 Hz, 1 H), 5.58 (s, 1 H), 5.65 (m, 1 H), 5.75 (s, 1 H). 13C NMR (300 MHz, CDCl3): δ = 23.4, 29.8, 37.2, 48.2, 56.2, 118.9, 119.1, 128.2, 132.5, 175.2. IR (KBr, film): 3076, 2976, 2920, 1695, 1639, 1426, 1254, 1113, 915 cm-1. HMRS (EI): m/z calcd for C10H14NOBr: 245.0239; found: 245.0242.