References
1a
Larrow JF.
Jacobsen EN.
Top. Organomet. Chem.
2004,
6:
123
1b
Cozzi PG.
Chem. Soc. Rev.
2004,
33:
410
2
Martínez LE.
Leighton JL.
Carsten DH.
Jacobsen EN.
J. Am. Chem. Soc.
1995,
117:
5897
3a
Schaus SE.
Brånalt J.
Jacobsen EN.
J. Org. Chem.
1998,
63:
403
3b
Huang Y.
Iwama T.
Rawal VH.
J. Am. Chem. Soc.
2000,
122:
784
4
Leighton JL.
Jacobsen EN.
J. Org. Chem.
1996,
61:
389
5
McGarrigle EM.
Gilheany DG.
Chem. Rev.
2005,
105:
1563
6
Doyle AG.
Jacobsen EN.
J. Am. Chem. Soc.
2005,
127:
62
7a
Bandini M.
Cozzi PG.
Melchiorre P.
Umani-Ronchi A.
Angew. Chem. Int. Ed.
1999,
38:
3357
7b
Bandini M.
Cozzi PG.
Umani-Ronchi A.
Angew. Chem. Int. Ed.
2000,
39:
2327
7c
Bandini M.
Cozzi PG.
Umani-Ronchi A.
Tetrahedron
2001,
57:
835
7d
Berkessel A.
Menche D.
Sklorz CA.
Schröder M.
Paterson I.
Angew. Chem. Int. Ed.
2003,
42:
1032
8 For a review of applications of(salen)Cr complexes in asymmetric catalysis see: Bandini M.
Cozzi PG.
Umani-Ronchi A.
Chem. Commun.
2002,
919
9 For a recent review on enantioselective allylation, see: Denmark SE.
Fu J.
Chem. Rev.
2003,
103:
2763
10a
Costa AL.
Piazza MG.
Tagliavini E.
Trombini C.
Umani-Ronchi A.
J. Am. Chem. Soc.
1993,
115:
7001
10b
Keck GE.
Tarbet KH.
Geraci LS.
J. Am. Chem. Soc.
1993,
115:
8467
11a
Bedeschi P.
Casolari S.
Costa AL.
Tagliavini E.
Umani-Ronchi A.
Tetrahedron Lett.
1995,
36:
7897
11b
Casolari S.
Cozzi PG.
Orioli PA.
Tagliavini E.
Umani-Ronchi A.
Chem. Commun.
1997,
2123
11c
Hanawa H.
Kii S.
Asao N.
Maruoka K.
Tetrahedron Lett.
2000,
41:
5543
12
Yanagisawa A.
Nakashima H.
Ishiba A.
Yamamoto H.
J. Am. Chem. Soc.
1996,
118:
4723
13
Furuta K.
Mouri M.
Yamamoto H.
Synlett
1991,
561
14
Kwiatkowski P.
Jurczak J.
Synlett
2005,
227
15
Kwiatkowski P.
Chaladaj W.
Jurczak J.
Tetrahedron Lett.
2004,
45:
5343
16a
High Pressure Chemistry
Eldik R.
Klarner F.-G.
Wiley;
New York:
2002.
16b
Chemistry under Extreme or Non-Clasical Conditions
van Eldik R.
Hubbard CD.
Wiley;
New York:
1997.
16c
Organic Synthesis at High Pressure
Matsumato K.
Acheson RM.
Wiley;
New York:
1991.
16d
High Pressure Chemical Synthesis
Jurczak J.
Baranowski B.
Elsevier;
New York:
1989.
17
Yamamoto Y.
Maruyama K.
Matsumoto K.
J. Chem. Soc., Chem. Commun.
1983,
489
18a
Irie R.
Noda K.
Ito Y.
Matsumoto N.
Katsuki T.
Tetrahedron Lett.
1990,
31:
7345
18b
Hosoya N.
Irie R.
Katsuki T.
Synlett
1993,
261
19a
Sasaki T.
Irie R.
Hamada T.
Suzuki K.
Katsuki T.
Tetrahedron
1994,
50:
11827
19b
Ito YN.
Katsuki T.
Bull. Chem. Soc. Jpn.
1999,
72:
603
20
Zhang W.
Jacobsen EN.
J. Org. Chem.
1991,
56:
2296
21
Pietikäinen P.
Tetrahedron
2000,
56:
417
22a
Casiraghi G.
Casnati G.
Puglia G.
Sartori G.
Terenghi G.
J. Chem. Soc., Perkin Trans. 1
1980,
1862
22b
Deng L.
Jacobsen EN.
J. Org. Chem.
1992,
57:
4320
23
Larrow JF.
Jacobsen EN.
J. Org. Chem.
1994,
59:
1939
24 Analytical data for the modified salen ligand (1R,2R)-7: mp 89-93 °C; [α]D
29 -329.5 (c 1.0, CHCl3); IR (KBr): 2963, 2875, 1628, 1597, 1445, 1263, 699 cm-1; 1H NMR (200 MHz, CDCl3): δ = 13.13 (s, OH, 2 H), 8.00 (s, CHN, 2 H), 7.45 (d, J = 1.8 Hz, 2 H), 7.25-7.09 (m, 10 H), 6.92 (d, J = 1.8 Hz, 2 H), 3.13-2.99 (m, 2 H), 2.50-2.25 (m, 4 H), 2.12-1.94 (m, 4 H), 1.86-1.69 (m, 4 H), 1.66-1.44 (m, 2 H), 1.30 (s, 18 H), 0.60 (t, J = 7.2 Hz, 6 H), 0.53 (t, J = 7.2 Hz, 6 H); 13C NMR (50 MHz, CDCl3): δ = 165.5 (2 × CHN), 157.5 (2 × C), 148.5 (2 × C), 139.2 (2 × C), 133.1 (2 × C), 129.2 (2 × CH), 127.2 (4 × CH), 127.0 (4 × CH), 125.8 (2 × CH), 124.7 (2 × CH), 117.5 (2 × C), 72.3 (2 × CH), 49.0 (2 × C), 34.0 (2 × C), 32.9 (2 × CH2), 31.5 (6 × CH3), 28.0 (2 × CH2), 27.1 (2 × CH2), 24.3 (2 × CH2), 8.7 (4 × CH3); Anal. Calcd for C50H66N2O2: C, 82.60; H, 9.15; N, 3.85. Found: C, 82.55; H, 9.23; N, 3.83; HRMS: [M + Na]+ calcd for C50H66N2O2Na: 749.5022, found: 749.5021.
25 Analytical data for the complex (1R,2R)-8: [α]D
29 -1420
(c 0.01, CHCl3); IR (KBr): 3429, 2961, 2873, 1622, 1533, 1437, 1258, 700, 546 cm-1; HRMS: [M - Cl]+ calcd for C50H64N2O2Cr: 776.4373, found: 776.4392.
26
General Procedure for High-Pressure Allylation: In a 2-mL Teflon ampoule were placed catalyst 1g (8.7 mg, 1 mol%), CH2Cl2 (ca. 1 mL), followed by aldehyde (1 mmol) and allyltributyltin (1.1-1.2 equiv). Finally, the ampoule was filled with CH2Cl2, closed and placed in a high-pressure vessel, and the pressure was slowly increased to 10 kbar at 20 °C. After the pressure had stabilized, the reaction mixture was kept under these conditions for 24 h. After decompression, the reaction mixture was diluted with wet Et2O and dried over MgSO4. After evaporation of solvents, the residue was chromatographed on a silica gel column (hexane-EtOAc).
27 The enantioselectivity of homoallylic alcohols 3a-f was determined by GC employing a capillary chiral β-dex 120 column. Alcohol 3f was analyzed directly, 3a, 3c and 3d as their O-trimethylsilyl derivatives, 3b as an acetate and 3e as a trifluoroacetate.