References
1a
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
3rd ed.:
John Wiley and Sons;
New York:
1999.
1b
Kocienski PJ.
Protecting Groups
Thieme;
Stuttgart:
1994.
2
Nicolaou KC.
Mitchel HJ.
Angew. Chem. Int. Ed.
2001,
40:
1576
3a
Fleet GWJ.
Smith PW.
Tetrahedron Lett.
1985,
26:
1469
3b
Gerspacher M.
Rapoport H.
J. Org. Chem.
1991,
56:
3700
3c
Yadav JS.
Chander MC.
Reddy KK.
Tetrahedron Lett.
1992,
33:
135
3d
Manna S.
Viala J.
Yadagiri P.
Falck JR.
Tetrahedron Lett.
1986,
27:
2679
3e
Park KH.
Yoon YJ.
Lee SG.
Tetrahedron Lett.
1994,
35:
9737
3f
Leblanc Y.
Fitzsimmons BJ.
Adams J.
Perez F.
Rokach J.
J. Org. Chem.
1986,
51:
789
3g
Baurle S.
Hoppen S.
Koert U.
Angew. Chem. Int. Ed.
1999,
38:
1263
3h
Ichihara A.
Ubukata M.
Sakamura S.
Tetrahedron Lett.
1977,
3473
4a
Kim KS.
Song YH.
Lee BH.
Hahn CS.
J. Org. Chem.
1986,
51:
404
4b
Iwata M.
Ohrui H.
Bull. Chem. Soc. Jpn.
1981,
54:
2837
4c
Vijayasaradhi S.
Singh J.
Aidhen IS.
Synlett
2000,
110
4d
Xiao X.
Bai D.
Synlett
2001,
535
4e
Swamy NR.
Venkateswarlu Y.
Tetrahedron Lett.
2002,
43:
7549
5a
Kozhevnikov IV.
Chem. Rev.
1998,
98:
171
5b
Mizuno N.
Misono M.
Chem. Rev.
1998,
98:
199
6
Izumi Y.
Hasebe R.
Urabe K.
J. Catal.
1983,
84:
402
7
Izumi Y.
Urabe K.
Onaka M.
Zeolite, Clay and Heteropoly Acid in Organic Reactions
Kodansha/VCH;
Tokyo:
1992.
8
Kozhevnikova EF.
Derouane EG.
Kozhevnikov IV.
Chem. Commun.
2002,
1178
9
Kaur J.
Griffin K.
Harrison B.
Kozhevnikov IV.
J. Catal.
2002,
208:
448
10
Firouzabadi H.
Iranpoor N.
Amani K.
Synthesis
2003,
408
11
Kishore Kumar GD.
Baskaran S.
Synlett
2004,
1719
12
Typical Experimental Procedure.
(a) Preparation of PMA/SiO
2
Catalyst.
PMA-SiO2 catalyst was prepared following the published procedure.
[11]
(b) Preparation of Terminal Diols.
To a solution of glucose diacetonide (260 mg, 1 mmol) in MeCN (2 mL) were added the 1 mol% PMA/SiO2 (0.01 mmol, based on PMA) followed by 40 µL of H2O, and the reaction mixture was stirred at ambient temperature for 5-7 min. After completion of the reaction as indicated by TLC, the solvent was removed under reduced pressure and the residue was dissolved in THF (2 mL) and filtered. The filtrate was concentrated under reduced pressure and purified by column chromatography (100-200 silica gel mesh) using hexane and EtOAc as solvent system to afford the pure diols. The filtered catalyst was reused without prior drying.
Spectral Data.
Entry b: [α]D +6 (c 1.76, CHCl3). 1H NMR (200 MHz, CDCl3): δ = 7.38 (s, 5 H), 5.75 (d, J = 3.8 Hz, 1 H), 4.64 (dd, J
1,2
= J
2,3
= 3.7 Hz, 1 H), 4.54 (s, 2 H), 3.40-4.00 (m, 6 H), 2.00-2.40 (m, 1 H), 1.48 (s, 3 H), 1.29 (s, 3 H). MS-FAB: m/z = 325.
Entry c: [α]D +2.8 (c 1, MeOH). 1H NMR (200 MHz, CDCl3): δ = 7.78 (d, J = 8.0 Hz, 2 H), 7.38 (d, J = 8.0 Hz, 2 H), 4.83 (d, J = 7.0 Hz, 1 H), 4.15 (d, J = 5.5 Hz, 1 H), 4.05 (d, J = 5.5 Hz, 1 H), 3.90 (d, J = 5.0 Hz, 1 H), 3.52-3.70 (m, 2 H), 2.60 (br s, 1 H), 2.50 (s, 3 H), 2.00 (br s, 1 H), 1.50 (s, 3 H), 1.32 (s, 3 H). MS-FAB: m/z = 389 [M+ + 1].
Entry d: [α]D -16.2 (c 0.4, CHCl3). 1H NMR (200 MHz, CDCl3): δ = 7.35-7.24 (m, 5 H), 6.98-6.82 (m, 1 H), 5.85 (d, J = 15.6 Hz, 1 H), 4.69 (d, J = 11.1 Hz, 1 H), 4.46 (d, J = 11.1 Hz, 1 H), 4.18 (q, J = 7.4 Hz, 2 H), 3.86-3.78 (m, 2 H), 3.50 (dd, J
1,2
= 11.1, J
2,3
= 5.9 Hz, 1 H), 3.35 (dd, J
1,2
= 11.1 Hz, J
2,3
= 5.9 Hz, 1 H), 2.52 (t, J = 6.7 Hz, 2 H), 1.58-1.43 (m, 2 H), 1.28 (t, J = 7.4 Hz, 3 H). MS-FAB: m/z = 331 [M+ + 23], 309 [M+ + 1].