Subscribe to RSS
DOI: 10.1055/s-2005-872872
Georg Thieme Verlag Stuttgart KG · New York
Partitioning Respiration of C3-C4 Mixed Communities Using the Natural Abundance 13C Approach - Testing Assumptions in a Controlled Environment
Publication History
Received: May 9, 2005
Accepted: August 30, 2005
Publication Date:
02 January 2006 (online)
Abstract
Contributions of C3 and C4 plants to respiration of C3-C4 ecosystems can be estimated on the basis of their contrasting 13C discrimination. But accurate partitioning requires accurate measurements of the isotope signature of whole system respiratory CO2 (δR), and of its members (δ3 and δ4). Unfortunately, experimental determination of representative δ3 and δ4 values is virtually impossible in nature, generating a need for proxies (surrogates) of δ3 and δ4 values (e.g., the δ of leaf biomass). However, recent evidence indicates that there may be systematic differences among the δ of respiratory and biomass components. Thus, partitioning may be biased depending on the proxy. We tested a wide range of biomass- and respiration-based δ proxies for the partitioning of respiration of mixed Lolium perenne (C3) - Paspalum dilatatum (C4) stands growing at two temperatures inside large 13CO2/12CO2 gas exchange chambers. Proxy-based partitioning was compared with results of reference methods, including (i) the δ of whole plant respiratory CO2 (δ3 and δ4) or (ii) respiration rate of intact C3 and C4 plants. Results of the reference methods agreed near perfectly. Conversely, some proxies yielded erroneous partitioning results. Partitioning based on either the δ of shoot or root respiratory CO2 produced the worst bias, because shoot respiratory CO2 was enriched in 13C by several ‰ and root respiratory CO2 was depleted by several ‰ relative to whole plant respiratory CO2. Use of whole plant or whole shoot biomass δ gave satisfactory partitioning results under the constant conditions of the experiments, but their use in natural settings is cautioned if environmental conditions are variable and the time scales of respiration partitioning differ strongly from the residence time of C in biomass. Other biomass-based proxies with faster turnover (e.g., leaf growth zones) may be more useful in changing conditions.
Key words
Respiration - 13C discrimination - C3 - C4 - flux partitioning - 13CO2/12CO2 exchange - ecosystem - Lolium perenne - Paspalum dilatatum.
References
- 1 Badeck F.-W., Tcherkez G., Nogues S., Piel C., Ghashghaie J.. Post-photosynthetic fractionation of stable carbon isotopes between plant organs - a wide-spread phenomenon. Rapid Communications in Mass Spectrometry. (2005); 19 1381-1391
- 2 Barbour M. M., Hunt J. H., Dungan R. J., Thurnbull M. H., Brailsford G. W., Farquhar G. D., Whitehead D.. Variation in the degree of coupling between δ13C of phloem sap and ecosystem respiration in two mature Nothofagus forests. New Phytologist. (2005); 166 497-512
- 3 Bird M. I., Pousai P.. Variations of delta C‐13 in the surface soil organic carbon pool. Global Biogeochemical Cycles. (1997); 11 313-322
- 4 Bond W. J., Midgley G. F., Woodward F. I.. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology. (2003); 9 973-982
- 5 Bowling D. R., McDowell N. G., Bond B. J., Law B. E., Ehleringer J. R.. 13C content of ecosystem respiration is linked to precipitation and vapour pressure deficit. Oecologia. (2003); 131 113-124
- 6 Bowling D. R., Burns S. P., Conway T. J., Monson R. K., White J. W. C.. Extensive observations of CO2 carbon isotope content in and above a high-elevation subalpine forest. Global Biogeochemical Cycles. (2005); DOI: 10.1029/2004GB002394
- 7 Buchmann N., Brooks J. R., Rapp K. D., Ehleringer J. R.. Carbon isotope composition of C‐4 grasses is influenced by light and water supply. Plant, Cell and Environment. (1996); 19 392-402
-
8 Buchmann N., Brooks J. R., Flanagan L. B., Ehleringer J. R..
Carbon isotope discrimination of terrestrial ecosystems. Griffiths, H., ed. Stable Isotopes. Oxford; BIOS Scientific Publishers (1998): 203-221 - 9 Buchmann N., Ehleringer J. R.. CO2 concentration profiles, and carbon and oxygen isotopes in C3 and C4 crop canopies. Agricultural and Forest Meteorology. (1998); 89 45-58
- 10 Collatz G. J., Berry J. A., Clark J. S.. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C‐4 grasses: present, past, and future. Oecologia. (1998); 114 441-454
- 11 Ehleringer J. R., Cerling T. E., Helliker B. R.. C4 photosynthesis, atmospheric CO2 and climate. Oecologia. (1997); 112 285-299
- 12 Ehleringer J. R., Buchmann N., Flanagan L. B.. Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications. (2000); 10 412-422
- 13 Ehleringer J. R., Bowling D. R., Flanagan L. B., Fessenden J., Helliker B., Martinelli L. A., Ometto J. P.. Stable isotopes and carbon cycle processes in forests and grasslands. Plant Biology. (2002); 4 181-189
- 14 Ekblad A., Högberg P.. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia. (2001); 127 305-308
- 15 Ekblad A., Boström B., Holm A., Comstedt D.. Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia. (2005); 143 136-142
- 16 Farquhar G. D., Ehleringer J. R., Hubick K. T.. Carbon isotope discrimination and photosynthesis. Annual Reviews of Plant Physiology and Plant Molecular Biology. (1989); 40 503-537
- 17 Ghashghaie J., Badeck F. W., Lanigan G., Nogués S., Tcherkez G., Deléens E., Cornic G., Griffiths H.. Carbon isotope fractionation during dark respiration and photorespiration. Phytochemistry Reviews. (2003); 2 145-161
- 18 Gleixner G., Danier H.-J., Werner R. A., Schmidt H.-L.. Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing Basidiomycetes. Plant Physiology. (1993); 102 1287-1290
- 19 Hobbie E. A., Werner R. A.. Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytologist. (2004); 161 371-385
- 20 Keeling C. D.. The concentration and isotopic abundance of atmospheric carbon dioxide in rural areas. Geochimica Cosmochimica Acta. (1958); 13 322-334
- 21 Keitel C., Adams M. A., Holst T., Matarakis A., Mayer H., Rennenberg H., Gessler A.. Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus sylvatica L.). Plant, Cell and Environment. (2003); 26 1157-1168
- 22 Klumpp K., Schäufele R., Lötscher M., Lattanzi F. A., Feneis W., Schnyder H.. C-isotope composition of CO2 respired by shoots and roots: fractionation during dark respiration?. Plant, Cell and Environment. (2005); 28 241-250
- 23 Lai C.-T., Schauer A. J., Owensby C., Ham J. M., Ehleringer J. R.. Isotopic air sampling in a tallgrass prairie to partition net ecosystem CO2 exchange. Journal of Geophysical Research - Atmospheres. (2003); DOI: 10.1029/2002JD003369
- 24 Lattanzi F. A., Schnyder H., Thornton B.. Defoliation effects on carbon and nitrogen substrate import and tissue-bound efflux in leaf growth zones of grasses. Plant, Cell and Environment. (2004); 27 347-356
- 25 Lattanzi F. A., Schnyder H., Thornton B.. The sources of carbon and nitrogen supplying leaf growth. Assessment of the role of stores with compartmental models. Plant Physiology. (2005); 137 383-395
- 26 Miller J. B., Tans P. P.. Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus, Series B, Chemical and Physical Meteorology. (2003); 55 207-214
- 27 Miranda A. C., Miranda H. S., Lloyd J., Grace J., Francey R. J., McIntyre J. A., Meir P., Riggan P., Lockwood R., Brass J.. Fluxes of carbon, water and energy over Brazilian Cerrado: an analysis using eddy covariance and stable isotopes. Plant, Cell and Environment. (1997); 20 315-328
- 28 Nogués S., Tcherkez G., Cornic G., Ghashghaie J.. Respiratory carbon metabolism following illumination in intact French Bean leaves using 13C/12C isotope labelling. Plant Physiology. (2004); 136 3245-3254
- 29 Pataki D. E., Ehleringer J. R., Flanagan L. B., Yakir D., Bowling D. R., Still C. J., Buchmann N., Kaplan J. O., Berry J. A.. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles. (2003); DOI: 10.1029/2001GB001850
- 30 Rossmann A., Butzenlechner M., Schmidt H. L.. Evidence for a non-statistical carbon isotope distribution in natural glucose. Plant Physiology. (1991); 96 609-614
- 31 Santruckova H., Bird M. I., Lloyd J.. Microbial processes and carbon-isotope fractionation in tropical and temperate grassland soils. Functional Ecology. (2000); 14 108-114
- 32 Scartazza A., Mata C., Matteucci G., Yakir D., Moscatello S., Brugnoli E.. Comparison of δ13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Oecologia. (2004); 140 340-351
- 33 Schnyder H., Schäufele R., Lötscher M., Gebbing T.. Disentangling CO2 fluxes: direct measurements of mesocosm-scale natural abundance 13CO2/12CO2 gas exchange, 13C discrimination, and labelling of CO2 exchange flux components in controlled environments. Plant, Cell and Environment. (2003); 26 1863-1874
- 34 Still C. J., Berry J. A., Ribas-Carbo M., Helliker B. R.. The contribution of C3 and C4 plants to the carbon cycle of a tall grass prairie: an isotopic approach. Oecologia. (2003); 136 347-359
- 35 Tcherkez G., Nogués S., Bleton J., Cornic G., Badeck F., Ghashghaie J.. Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French bean. Plant Physiology. (2003); 131 237-244
- 36 Yakir D., Sternberg L. D. S. L.. The use of stable isotopes to study ecosystem gas exchange. Oecologia. (2000); 123 297-311
H. Schnyder
Lehrstuhl für Grünlandlehre
Technische Universität München
Am Hochanger 1
85350 Freising-Weihenstephan
Germany
Email: schnyder@wzw.tum.de
Guest Editor: R. Matyssek