Subscribe to RSS
DOI: 10.1055/s-2005-872877
Georg Thieme Verlag KG Stuttgart · New York
Molybdenum Cofactor Deficiency Presenting as Neonatal Hyperekplexia: A Clinical, Biochemical and Genetic Study
Publication History
Received: May 4, 2005
Accepted after Revision: September 7, 2005
Publication Date:
24 November 2005 (online)
Abstract
We report a newborn with exaggerated startle reactions and stiffness of neonatal onset, the prototypical signs of hyperekplexia. Startle and flexor spasms, leading to apnoea, did not respond to treatment with clonazepam but did partially to sodium valproate. Molecular analysis of GLRA1 revealed no mutations. The incidental finding of hypouricemia led to a work-up for molybdenum cofactor (MoCo) deficiency; the diagnosis was confirmed by the altered urine chemistries, including elevated urine S-sulphocysteine. Despite persistence of the spasms, clinical or electrographic seizures were never detected before the infant died at age 1 month. In this patient, the concurrence of hyperekplexia and MoCo deficiency was suggestive of impaired gephyrin function. GPH mutational analysis, however, showed no abnormalities. The patient was eventually found to harbour a novel c.1064T > C mutation in exon 8 of the MOCS1 gene. Despite extensive sequence analysis of the gene, the second causative mutation of this recessive trait still awaits identification. MoCo deficiency should be considered in the differential diagnosis of neonatal hyperekplexia, particularly in the instances of refractoriness to clonazepam, an early demise in infancy or the evidence of no mutations in the GLRA1 gene.
Key words
Startle - newborn - molybdenum - gephyrin
References
- 1 Andermann F, Keene D L, Andermann E, Quesney L F. Startle disease or hyperekplexia: further delineation of the syndrome. Brain. 1980; 103 985-997
- 2 Berthier M, Bonneau D, Desbordes J M, Chevrel J, Oriot T, Jaeken J. et al . Possible involvement of a gamma-hydroxybutyric acid receptor in startle disease. Acta Paediatr. 1994; 83 678-680
- 3 Brown P, Rothwell J C, Thompson P D, Britton T C, Day B L, Marsden C D. The hyperekplexias and their relationship to the normal startle reflex. Brain. 1991; 114 1903-1928
- 4 Dooley J M, Andermann F. Startle disease or hyperekplexia: Adolescent onset and response to valproate. Pediatr Neurol. 1989; 5 126-127
- 5 Dubowitz L MS, Bouza H, Hird M F, Jaeken J. Low cerebrospinal fluid concentration of free gamma-aminobutyric acid in startle disease. Lancet. 1992; 340 80-81
- 6 Essrich C, Lorez M, Benson J A, Fritschy J M, Luscher B. Postsynaptic clustering of major GABA(A) receptor subtypes requires the gamma-2 subunit and gephyrin. Nature Neurosci. 1998; 1 563-571
- 7 Feng G, Tintrup H, Kirsch J, Nichol M C, Kuhse J, Betz H. et al . Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science. 1998; 282 1321-1324
- 8 Gomeza J, Ohno K, Hulsmann S, Armsen W, Eulenburg V, Richter D W. et al . Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron. 2003; 40 797-806
- 9 Graf W D, Oleinik O E, Jack R M, Weiss A H, Johnson J L. Ahomocysteinemia in molybdenum cofactor deficiency. Neurology. 1998; 51 668-670
- 10 Gray T A, Nicholls R D. Diverse splicing mechanisms fuse the evolutionarily conserved bicistronic MOCS1A and MOCS1B open reading frames. RNA. 2000; 6 928-936
-
11 Johnson J L, Wadman S K.
Molybdenum cofactor deficiency. Scriver CR, Beaudet AL, Sly WS, Valle D The metabolic basis of inherited disease. 6th edn. New York; McGraw-Hill 1989: 1463 - 12 Kneller D G, Cohen F E, Langridge R. Improvements in protein secondary structure prediction by an enhanced neural network. J Mol Biol. 1990; 214 171-182
- 13 Kirsch J, Wolters I, Triller A, Betz H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature. 1993; 366 745-748
- 14 Kirstein L, Silfverskiold B P. A family with emotionally precipitated “drop seizures”. Acta Psychiatr Neurol Scand. 1958; 33 471-476
- 15 Kwok J B, Raskin S, Morgan G, Antoniuk S A, Bruk I, Schofield P R. Mutations in the glycine receptor alpha1 subunit (GLRA1) gene in hereditary hyperekplexia pedigrees: evidence for non-penetrance of mutation Y279C. J Med Genet. 2001; 38 E17
- 16 Kok O, Bruyn G W. An unidentified hereditary disease. Lancet. 1962; 1 1359
- 17 Kurczinsky T. Hyperekplexia. Arch Neurol. 1983; 40 246-248
- 18 Lingam S, Wilson J, Hart E W. Hereditary stiff-baby syndrome. Am J Dis Child. 1981; 135 909-911
- 19 Matsumoto J, Fuhr P, Nigro M, Hallett M. Physiological abnormalities in hereditary hyperekplexia. Ann Neurol. 1992; 32 41-50
- 20 McAbee G N, Kadakia S K, Sisley K C, Delfiner J S. Complete heart block in nonfamilial hyperekplexia. Pediatr Neurol. 1995; 12 149-151
- 21 Nigro M A, Lim H CN. Hyperekplexia and sudden neonatal death. Pediatr Neurol. 1992; 8 221-225
- 22 Praveen V, Patole S K, Whitehall J S. Hyperekplexia in neonates. Postgrad Med J. 2001; 77 570-572
- 23 O'Shea S M, Becker L, Weiher H, Betz H, Laube B. Propofol restores the function of “hyperekplexic” mutant glycine receptors in Xenopus oocytes and mice. J Neurosci. 2004; 24 2322-2327
- 24 Rees M I, Lewis T M, Vafa B, Ferrie C, Corry P, Muntoni F. et al . Compound heterozygosity and nonsense mutations in the alpha(1)-subunit of the inhibitory glycine receptor in hyperekplexia. Hum Genet. 2001; 109 267-270
- 25 Rees M I, Lewis T M, Kwok J BJ, Mortier G R, Govaert P, Snell R G. et al . Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB). Hum Molec Genet. 2002; 11 853-860
- 26 Rees M I, Harvey K, Ward H. et al . Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor and mutation analysis in hyperekplexia. J Biol Chem. 2003; 278 24688-24696
- 27 Reiss J, Cohen N, Dorche C, Mandel H, Mendel R R, Stallmeyer B. et al . Mutations in a polycistronic nuclear gene associated with molybdenum cofactor deficiency. Nat Genet. 1998; 20 51-53
- 28 Reiss J, Christensen E, Kurlemann G, Zabot M T, Dorche C. Genomic structure and mutational spectrum of the bicistronic MOCS1 gene defective in molybdenum cofactor deficiency type A. Hum Genet. 1998; 103 639-644
- 29 Reiss J, Gross-Hardt S, Christensen E, Schmidt P, Mendel R R. Schwarz G. A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency. Am J Hum Genet. 2001; 68 208-213
- 30 Reiss J, Johnson J L. Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2 and GEPH. Hum Mutat. 2003; 21 569-576
- 31 Sander J E, Layzer R B, Goldsobel A B. Congenital stiff-man syndrome. Ann Neurol. 1980; 8 195-197
- 32 Shahar E, Brand N, Uziel Y, Barak Y. Nose tapping test inducing a generalized flexor spasm. A hallmark for hyperekplexia. Acta Paediatr Scand. 1991; 80 1073-1077
- 33 Shiang R, Ryan S G, Zhu Y, Hahn A F, O'Connell P, Wasmuth J J. Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet. 1993; 5 351-357
- 34 Shiang R, Ryan S G, Zhu Y Z, Fielder T J, Allen R J, Fryer A. et al . Mutational analysis of familial and sporadic hyperekplexia. Ann Neurol. 1995; 38 85-91
- 35 Stephenson J BP. Vigabatrin for startle disease with altered cerebrospinal fluid free gamma-aminobutyric acid in startle disease. Lancet. 1992; 340 81-82
- 36 Suhren O, Bruyn G W, Tuyman J A. Hyperekplexia a hereditary startle syndrome. J Neurol Sci. 1966; 3 577-605
- 37 Vigevano F, Di Capua M, Dalla Bernardina B. Startle disease: an avoidable cause of sudden infant death. Lancet. 1989; 1 216
M.D. Alfons Macaya
Secció Neurologia Infantil · Hospital Materno-infantil Vall d’Hebron
Passeig Vall d’Hebron 119 - 129
08035 Barcelona
Spain
Email: amacaya@vhebron.net