Abstract
In a two-year phytotron study, juvenile trees of European beech (Fagus sylvatica) and Norway spruce (Picea abies) were grown in mixture under ambient and twice ambient ozone (O3 ) and infected with the root pathogen Phytophthora citricola . We investigated the influence of O3 on the trees' susceptibility to the root pathogen and assessed, through a 15 N-labelling experiment, the impact of both treatments (O3 exposure and infection) on belowground competitiveness. The hypotheses tested were that: (1) both P. citricola and O3 reduce the belowground competitiveness (in view of N acquisition), and (2) that susceptibility to P. citricola infection is reduced through acclimation to enhanced O3 exposure. Belowground competitiveness was quantified via cost/benefit relationships, i.e., the ratio of structural investment in roots relative to their uptake of 15 N. Beech had a lower biomass acquisition and captured less 15 N under enhanced O3 and P. citricola infection alone than spruce, whereas the latter species appeared to profit from the lower resource acquisition of beech in these treatments. Nevertheless, in the combined treatment, susceptibility to P. citricola of spruce was increased, while beech growth and 15 N uptake were not further reduced below the levels found under the single treatments. Potential trade-offs between stress defence, growth performance, and associated nitrogen status are discussed for trees affected through O3 and/or pathogen infection. With respect to growth performance, it is concluded that O3 enhances susceptibility to the pathogen in spruce, but apparently raises the defence capacity in beech.
Key words
Ozone (O3 ) - European beech (Fagus sylvatica)
- Norway spruce (Picea abies)
- competition - pathogen resistance - N-15 labelling.
References
1
Andersen C. P..
Source-sink balance and carbon allocation below ground in plants exposed to ozone.
New Phytologist.
(2003);
157
213-228
2
Ashmore M. R..
Assessing the future global impacts of ozone on vegetation.
Plant, Cell and Environment.
(2005);
28
949-964
3 Bergmann W.. Ernährungsstörungen bei Kulturpflanzen. Jena; Gustav Fischer (1993): 1-835
4
Böhm J., Hahn A., Schubert R., Bahnweg G., Adler N., Nechwatal J., Oehlmann R., Oßwald W..
Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophthora infestans and Phytophthora citricola in their respective host plants.
Journal of Phytopathology.
(1999);
147
409-416
5
Cahill D. M., McComb J. A..
A comparison of changes in phenylalanine ammonia-lyase activity, lignin and phenolic synthesis in the roots of Eucalyptus calophylla (field resistant) and E. marginata (susceptible) when infected with Phytophthora cinnamomi.
.
Physiological and Molecular Plant Pathology.
(1992);
40
315-332
6
Cooke D. E. L., Drenth A., Duncan J. M., Wagels G., Brasier C. M..
A molecular phylogeny of Phytophthora and related oomycetes.
Fungal Genetics and Biology.
(2000);
30
17-32
7
Dietrich R., Ploss K., Heil M..
Constitutive and induced resistance to pathogens in Arabidopsis thaliana depends on nitrogen supply.
Plant, Cell and Environment.
(2004);
27
896-906
8
Dietrich R., Ploss K., Heil M..
Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions.
Plant, Cell and Environment.
(2005);
28
211-222
9 Erwin D. C., Ribeiro O. K..
Phytophthora Diseases Worldwide. St. Paul; The American Phytopathological Society (1996): 1-592
10 Fabian P.. Leben im Treibhaus. Unser Klimasystem - und was wir daraus machen. Berlin; Springer-Verlag (2002): 1-258
11
Fleischmann F., Schneider D., Matyssek R., Oßwald W. F..
Investigations on net CO2 assimilation, transpiration and root growth of Fagus sylvatica infested with four different Phytophthora species.
Plant Biology.
(2002);
4
144-152
12
Fleischmann F., Göttlein A., Rodenkirchen H., Lutz C., Oßwald W..
Biomass, nutrient and pigment content of beech (Fagus sylvatica) saplings infected with Phytophthora citricola, P. cambivora, P. pseudosyringae and P. undulata.
.
Forest Pathology.
(2004);
34
79-92
13
Fowler D., Cape J. N., Coyle M., Smith R. I., Hjellbrekke A. G., Simpson D., Derwent R. G., Johnson C. E..
Modelling photochemical oxidant formation, transport, deposition and exposure of terrestrial ecosystems.
Environmental Pollution.
(1999);
100
43-55
14 Fuhrer J., Achermann B.. Critical Levels for Ozone - Level II. Environmental Documentation No. 115 Air. Workshop under the Convention on Long-Range Transboundary Air Pollution of the United Nations Economic Commission for Europe (UNECE). Gerzensee; Swiss Agency for the Environment, Forests and Landscape (SAEFL) (1999): 1-133
15
Gessler A., Kopriva S., Rennenberg H..
Regulation of nitrate uptake at the whole-tree level: interaction between nitrogen compounds, cytokinins and carbon metabolism.
Tree Physiology.
(2004);
24
1313-1321
16
Grams T. E. E., Kozovits A. R., Reiter I. M., Winkler J. B., Sommerkorn M., Blaschke H., Haberle K. H., Matyssek R..
Quantifying competitiveness in woody plants.
Plant Biology.
(2002);
4
153-158
17
Heagle A. S..
Interactions between air pollutants and plant parasites.
Annual Review of Phytopathology.
(1973);
11
365-388
18
Heller W., Rosemann D., Oßwald W. F., Benz B., Schönwitz R., Lohwasser K., Kloss M., Sandermann H..
Biochemical response of Norway spruce (Picea abies [L.] Karst.) towards 14-month exposure to ozone and acid mist. Part I - Effects on polyphenol and monoterpene metabolism.
Environmental Pollution.
(1990);
64
353-366
19
Herms D. A., Mattson W. J..
The dilemma of plants - to grow or defend.
Quarterly Review of Biology.
(1992);
67
283-335
20
Hoagland D. R., Arnon D. I..
The water-culture method for growing plants without soil.
California Agricultural Experiment Station Circular.
(1950);
147
1-32
21
Imo M., Timmer V. R..
Nitrogen uptake of mesquite seedlings at conventional and exponential fertilization schedules.
Soil Science Society of America Journal.
(1992);
56
927-934
22
Jung T., Blaschke H..
Phytophthora root rot in declining forest trees.
Phyton - Annales Rei Botanicae.
(1996);
36
95-101
23
Jung T., Cooke D. E. L., Blaschke H., Duncan J. M., Oßwald W..
Phytophthora quercina sp nov., causing root rot of European oaks.
Mycological Research.
(1999);
103
785-798
24
Karnosky D. F., Percy K. E., Xiang B. X., Callan B., Noormets A., Mankovska B., Hopkin A., Sober J., Jones W., Dickson R. E., Isebrands J. G..
Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp tremuloidae).
.
Global Change Biology.
(2002);
8
329-338
25
Kozovits A. R., Matyssek R., Blaschke H., Göttlein A., Grams T. E. E..
Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons.
Global Change Biology.
(2005 a);
11
1387-1401
26
Kozovits A. R., Matyssek R., Winkler J. B., Göttlein A., Blaschke H., Grams T. E. E..
Above-ground space sequestration determines competitive success in juvenile beech and spruce trees.
New Phytologist.
(2005 b);
167
181-196
27 Kreutzer K., Göttlein A., Pröbstle P., Zuleger M.. Höglwaldforschung 1982 - 1989. Zielsetzung, Versuchskonzept, Basisdaten. Kreutzer, K. and Göttlein, A., eds. Ökosystemforschung Höglwald. Forstwissenschaftliche Forschungen. Hamburg, Berlin; Verlag Paul Parey (1991): 11-21
28
Küppers M..
Carbon relations and competition between woody species in a Central European hedgerow. 3. Carbon and water-balance on the leaf level.
Oecologia.
(1984);
65
94-100
29
Laurence J. A., Andersen C. P..
Ozone and natural systems: understanding exposure, response, and risk.
Environment International.
(2003);
29
155-160
30 Lefohn A. S.. Surface Level Ozone Exposures and Their Effects on Vegetation. Chelsea; Lewis Publishers (1992): 1-366
31
Lippert M., Steiner K., Payer H. D., Simons S., Langebartels C., Sandermann H..
Assessing the impact of ozone on photosynthesis of European beech (Fagus sylvatica L.) in environmental chambers.
Trees - Structure and Function.
(1996);
10
268-275
32
Manning W. M., von Tiedemann A..
Climate change: potential effects of increased atmospheric carbon dioxide (CO2 ), ozone (O3 ), and ultraviolet-B (UV‐B) radiation on plant diseases.
Environmental Pollution.
(1995);
88
219-245
33
Matyssek R., Innes J. L..
Ozone - a risk factor for trees and forests in Europe?.
Water, Air and Soil Pollution.
(1999);
116
199-226
34 Matyssek R., Sandermann H.. Impact of ozone on trees: an ecophysiological perspective. Esser, K., Lüttge, U., Beyschlag, W., and Hellwig, F., eds. Progress in Botany. Berlin, Heidelberg; Springer Verlag (2003): 349-404
35
Nechwatal J., Oßwald W..
Comparative studies on the fine root status of healthy and declining spruce and beech trees in the Bavarian Alps and occurrence of Phytophthora and Pythium species.
Forest Pathology.
(2001);
31
257-273
36
Nunn A. J., Reiter I. M., Haberle K. H., Werner H., Langebartels C., Sandermann H., Heerdt C., Fabian P., Matyssek R..
“Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech.
Phyton - Annales Rei Botanicae.
(2002);
42
105-119
37 Payer H.-D., Blodow P., Köfferlein M., Lippert M., Schmolke W., Seckmeyer G., Seidlitz H., Strube D., Thiel S.. Controlled environment chambers for experimental studies on plant responses to CO2 and interactions with pollutants. Schulze, E.-D. and Mooney, H., eds. Design and Execution of Experiments on CO2 Enrichment. Brussels; Commission European Communities (1993): 127-145
38
Pretzsch H., Dursky J..
Growth reaction of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus silvatica L.) to possible climatic changes in Germany. A sensitivity study.
Forstwissenschaftliches Centralblatt.
(2002);
121
145-154
39
Pritsch K., Luedemann G., Matyssek R., Hartmann A., Schloter M., Scherb H., Grams T. E. E..
Mycorrhizosphere responsiveness to atmospheric ozone and inoculation with Phytophthora citricola in a phytotron experiment with spruce/beech mixed cultures.
Plant Biology.
(2005);
DOI: 10.1055/s-2005-872972
40
Reiter I. M., Haberle K. H., Nunn A. J., Heerdt C., Reitmayer H., Grote R., Matyssek R..
Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain.
Oecologia.
(2005);
146
337-349
41
Samuelson L., Kelly J. M..
Scaling ozone effects from seedlings to forest trees.
New Phytologist.
(2001);
149
21-41
42
Sandermann H., Ernst D., Heller W., Langebartels C..
Ozone: an abiotic elicitor of plant defence reactions.
Trends in Plant Science.
(1998);
3
47-50
43
Schmitt R., Sandermann H..
Biochemical response of Norway spruce (Picea abies [L.] Karst.) towards 14-month exposure to ozone and acid mist. Part II - Effects on protein biosynthesis.
Environmental Pollution.
(1990);
64
367-373
44
Schwinning S..
Decomposition analysis of competitive symmetry and size structure dynamics.
Annals of Botany.
(1996);
77
47-57
45
Skärby L., Ro-Poulsen H., Wellburn F. A. M., Sheppard L. J..
Impacts of ozone on forests: a European perspective.
New Phytologist.
(1998);
139
109-122
46
Sprugel D. G., Hinckley T. M., Schaap W..
The theory and practice of branch autonomy.
Annual Review of Ecology and Systematics.
(1991);
22
309-334
47 Stockwell W. R., Kramm G., Scheel H.-E., Mohnen V. A., Seiler W.. Ozone formation, destruction and exposure in Europe and the United States. Sandermann, H., Wellburn, A. R., and Heath, R. L., eds. Ecological Studies 127, Forest Decline and Ozone. A Comparison of Controlled Chamber and Field Experiments. Berlin, Heidelberg, New York; Springer (1997): 1-38
48
von Tiedemann A., Firsching K. H..
Combined whole-season effects of elevated ozone and carbon dioxide concentrations on a simulated wheat leaf rust (Puccinia recondita f. sp. tritici) epidemic.
Journal of Plant Diseases and Protection.
(1998);
105
555-566
49
Werres S..
Influence of the Phytophthora isolate and the seed source on the development of beech (Fagus sylvatica) seedling blight.
European Journal of Forest Pathology.
(1995);
25
381-390
50 Wolff B., Riek W.. eutscher Waldbodenbericht 1996 - Ergebnisse der bundesweiten Bodenzustandserhebung in Wald (BZE) 1987 - 1993. Bonn; Bundesministerium für Ernährung, Landwirtschaft und Forsten (BELF) (1999): 1-120
51 Zangerl A. R., Bazzaz F. A.. Theory and pattern in plant defense allocation. Fritz, R. S. and Simms, E. L., eds. Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. Chicago; University of Chicago Press (1992): 363-391
52 Zar J. H.. Biostatistical Analysis. New Jersey; Prentice-Hall (1999): 1-931
G. Luedemann
Department of Ecology Ecophysiology of Plants Technische Universität München
Am Hochanger 13
85354 Freising-Weihenstephan
Germany
Email: gustavo.luedemann@mytum.de
Editor: H. Rennenberg