Plant Biol (Stuttg) 2006; 8(1): 42-51
DOI: 10.1055/s-2005-872945
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Parameters for Cellular Viability and Membrane Function in Chenopodium Cells Show a Specific Response of Extracellular pH to Heat Shock with Extreme Q10

A. Chaidee1 , W. Pfeiffer1
  • 1Institut für Pflanzenphysiologie, Universität Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
Further Information

Publication History

Received: May 2, 2005

Accepted: September 23, 2005

Publication Date:
22 December 2005 (online)

Abstract

The effect of brief heat shock on Chenopodium cells was investigated by measuring biochemical parameters for cellular vitality, membrane function and integrity: extracellular pH, release of osmotic compounds, phosphatase, protein and betalain, and cellular reduction of DCPIP and MTT. A threshold temperature was found at 45 °C, where release of osmotic compounds, protein and betalain, and reduction of DCPIP and MTT indicate loss of vitality. Extracellular pH and an alkaline phosphatase responded 10 - 20 °C below this threshold, suggesting that extracellular alkalinization, and probably the release of a phosphatase, are part of a specific cellular response to abiotic stress induced by heat shock. The extracellular proton concentration did not increase above 45 °C: this may indicate equilibration of gradients driving this process or an inactivation of cellular mechanisms responsible for extracellular alkalinization. The response of extracellular pH to heat shock in Chenopodium cell suspensions was fast, i.e., up to + 1 pH in 5 min. Addition of the K+/H+ antiporter nigericin to Chenopodium cells caused an extracellular alkalinization similar to heat shock. The heat shock-induced extracellular alkalinization was characterized by Q10 values for distinct ranges of temperature (Q10 of 56 for 24 - 31 °C, 2.3 for 31 - 42 °C, and 1.0 for 42 - 50 °C). To the author's knowledge, the Q10 of 56 is the highest found up to now. These results suggest that extracellular protons are involved in temperature sensing and signalling in plant cells, probably via a channel-mediated pathway.

References

  • 1 Akeson M., Deamer D. W.. Proton conductance by the gramicidin water wire: model for proton conductance in the F0F1 ATPases?.  Biophysical Journal. (1991);  60 101-109
  • 2 Aloni B., Daie J., Wyse R. E.. Regulation of apoplastic pH in source leaves of Vicia faba by gibberellic acid.  Plant Physiology. (1988);  88 367-369
  • 3 Althoff G., Lill H., Junge W.. Proton channel of the chloroplast ATP synthase, CF0: its time-averaged single-channel conductance as a function of pH, temperature, isotopic and ionic medium composition.  Journal of Membrane Biology. (1989);  108 263-271
  • 4 Askerlund P., Larsson C.. Transmembrane electron transport in plasma membrane vesicles loaded with an NADH-generating system or ascorbate.  Plant Physiology. (1991);  96 1178-1184
  • 5 Atkinson M., Bina J., Sequeira L.. Phosphoinositide breakdown during the K+/H+ exchange response of tobacco to Pseudomonas syringae pv. Syringae. .  Molecular Plant-Microbe Interactions. (1993);  6 253-260
  • 6 Berlin J., Sieg S., Bokem M., Harms H.. Production of betalains by suspension cultures of Chenopodium rubrum L.  Plant Cell Tissue Organ Culture. (1986);  5 163-174
  • 7 Bernas T., Dobrucki J. W.. The role of plasma membrane in bioreduction of two tetrazolium salts, MTT and CTC.  Archives of Biochemistry and Biophysics. (2000);  380 108-116
  • 8 Bevensee M. O., Bashi E., Boron W. F.. Effect of trace levels of nigericin on intracellular pH and acid-base transport in rat mesangial cells.  Journal of Membrane Biology. (1999);  169 131-139
  • 9 Blatt M. R., Armstrong F.. K+ channels of stomatal guard cells: Abscisic acid - evoked control of the outward rectifier mediated by cytoplasmic pH.  Planta. (1993);  191 330-341
  • 10 Bokern M., Strack D.. Synthesis of hydroxycinnamic acid esters of betacyanins via 1-O-acylglucosides of hydroxycinnamic acids by protein preparations from cell suspension cultures of Chenopodium rubrum and petals of Lampranthus sociorum.  Planta. (1988);  174 101-105
  • 11 Bradford M. M.. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Analytical Biochemistry. (1976);  72 248-254
  • 12 Chiu S. Y., Mrose H. E., Ritchie J. M.. Anomalous temperature dependence of the sodium conductance in rabbit nerve compared with frog nerve.  Nature. (1979);  279 327-328
  • 13 DeCoursey T. E., Cherny V. V.. Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phygocytes.  Journal of General Physiology. (1998);  112 503-522
  • 14 Dempster J. A., VanHoek A. N., VanOs C. H.. The quest for water channels.  News in Physiological Sciences. (1992);  7 172-176
  • 15 Fasano J. M., Swanson S. J., Blancaflor E. B., Dowd P. E., Kao T., Gilroy S.. Changes in root cap pH are required for the gravity response of the Arabidopsis root.  Plant Cell. (2001);  13 907-921
  • 16 Felix G., Regenass M., Boller T.. Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation and establishment of a refractory state.  The Plant Journal. (1993);  4 307-316
  • 17 Felle H. H.. pH: signal and messenger in plant cells.  Plant Biology. (2001);  3 577-591
  • 18 Felle H. H., Bentrup F.-W.. Effects of light upon membrane potential, conductance, and ion fluxes in Riccia fluitans.  Journal of Membrane Biology. (1976);  27 53-170
  • 19 Frias I., Caldeira M. T., Perez-Castineira J. R., Navarro-Avino J. P., Culianez-Macia F. A., Kuppinger O., Stransky H., Pages M., Hager A., Serrano R.. A major isoform of the maize plasma membrane H+-ATPase: characterization and induction by auxin in coleoptiles.  Plant Cell. (1996);  8 1533-1544
  • 20 Garrido I., Espinosa F., Alvarez-Tinaut M. C.. Effect of dichlorophenolindophenol, dichlorophenolindophenol-sulfonate, and cytochrome c on redox capacity and simultanous net H+/K+ fluxes in aeroponically grown seedling roots of sunflower (Helianthus annuus L.): new evidence for a plasma membrane CN-resistant redox chain.  Protoplasma. (2001);  217 56-64
  • 21 Ghannam A. F., Tsen W., Rowlett R. S.. Activation parameters for the carbonic anhydrase H-catalyzed hydrataion of CO2.  Journal of Biological Chemistry. (1986);  261 1164-1169
  • 22 Grignon C., Sentenac H.. pH and ionic conditions in the apoplast.  Annual Reviews of Plant Physiology and Plant Molecular Biology. (1991);  42 103-128
  • 23 Hager A., Debus G., Edel H.-G., Stransky H., Serrano R.. Auxin induces exocytosis and rapid synthesis of a high-turnover pool of plasma membrane H+-ATPase.  Planta. (1991);  185 527-537
  • 24 Hahlbrock K., Scheel D., Logemenn E., Nürnberger T., Papniske M., Reinold S., Sacks W. R., Schmelzer E.. Oligopeptide elicited defense gene activation in cultured parsley cells.  Proceedings of the National Academy of Sciences of the USA. (1995);  92 4150-4157
  • 25 Harms H., Dehnen W., Mönch W.. Bezopyrene metabolites formed by plant cells.  Zeitschrift für Naturforschung. (1977);  32c 321-326
  • 26 Heijn A. N.. On the relation between growth and extensibility of the cell wall.  Proceedings of the Konigliche Akademie van Wettstein, Amsterdam. (1930);  33 1046-1058
  • 27 Hepler P. K., Wayne R. O.. Calcium and plant development.  Annual Reviews of Plant Physiology and Molecular Biology. (1985);  36 397-439
  • 28 Hussain R. F., Nouri A. M. E., Oliver R. T. D.. A new approach for measurement of cytotoxity using colorimetric assay.  Journal of Immunological Methods. (1993);  160 89-96
  • 29 Ives H. E.. Proton/hydroxyl permeability of proximal tubule brush border vesicles.  American Journal of Physiology. (1985);  248 F78-F86
  • 30 Kirsch G. E., Sykes J. S.. Temperature dependence of Na currents in rabbit and frog muscle membranes.  Journal of General Physiology. (1987);  89 239-251
  • 31 Knöpfel M., Schulthess G., Funk F., Hauser H.. Characterization of an integral protein of the brush border membrane mediating the transport of divalent metal ions.  Biophysical Journal. (2000);  79 874-884
  • 32 Komor E., Tanner W.. The hexose-proton cotransport system of Chlorella: pH-dependent changes in Km values and translocation constant of the uptake system.  Journal of General Physiology. (1974);  64 568-581
  • 33 Lee R. B.. Phosphate influx and extracellular phosphatase activity in barley roots and rose cells.  New Phytologist. (1988);  109 141-148
  • 34 Lee J. H., Hübel A., Schöffl F.. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis.  The Plant Journal. (1995);  8 603-612
  • 35 Lee M. P., Gear A. R. L.. The effect of temperature on mitochondrial membrane-linked reactions.  Journal of Biological Chemistry. (1974);  249 7541-7549
  • 36 Lee S. C., Deutsch C.. Temperature dependence of K+ channel properties in human T lymphocytes.  Biophysical Journal. (1990);  57 49-62
  • 37 Lee Y., Satter R. L.. Effects of temperature on H+ uptake and release during circadian rhythmic movements of excised Samanea motor organs.  Plant Physiology. (1988);  86 352-354
  • 38 Malik M. K., Slovin J. P., Hwang C. H., Zimmermann J. L.. Modified expression of a carrot small heat shock protein gene, Hsp 17.7, results in increased or decreased thermotolerance.  The Plant Journal. (1999);  20 89-99
  • 39 Marquardt-Jarczyk G., Lüttge U.. Anion transport at the tonoplast of mesophyll cells of the CAM plant Kalanchoe daigremontiana.  Journal of Plant Physiology. (1990);  136 129-136
  • 40 Mishra S. K., Tripp J., Winkelhaus S., Tschiersch B., Theres K., Nover L., Scharf K.-D.. In the complex family of heat stress transcription factors, HsfA1 has a unique role as a master regulator of thermotolerance in tomato.  Genes and Development. (2002);  16 1555-1567
  • 41 Morita N., Nakazato H., Okuyama H., Kim Y., Thompson Jr. G. A.. Evidence for a glycosylinositolphospholipid-anchored alkaline phosphatase in the aquatic plant Spirodela oligorrhiza.  Biochimica et Biophysica Acta. (1996);  1290 53-62
  • 42 Mosmann T.. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxity assays.  Journal of Immunological Methods. (1983);  65 55-63
  • 43 Ortiz C., Cardemil L.. Heat-shock responses in two leguminous plants: a comparative study.  Journal of Experimental Botany. (2001);  52 1711-1719
  • 44 Peters W. S., Felle H. H.. Control of apoplast pH in corn coleoptile segments. II: The effects of various auxins and auxin analogues.  Journal of Plant Physiology. (1991);  137 691-696
  • 45 Pfeiffer W.. Expression and low pH increase the activity of an apoplastic acid phosphatase in growing tissues from Zea mays.  Physiologia Plantarum. (1998);  102 111-118
  • 46 Pfeiffer W., Hager A.. A Ca2+ ATPase and a Mg2+/H+ antiporter are present on tonoplast membranes from roots of Zea mays L.  Planta. (1993);  191 377-385
  • 47 Pfeiffer W., Höftberger M.. Oxidative burst in Chenopodium rubrum suspension cells: induction by auxin and osmotic changes.  Physiologia Plantarum. (2001);  111 144-150
  • 48 Pressman B. C.. Biological applications of ionophores.  Annual Reviews of Biochemistry. (1976);  45 501-530
  • 49 Pusch M., Ludewig U., Jentsch T. J.. Temperature dependence of fast and slow gating relaxations of ClC‐0 chloride channels.  Journal of General Physiology. (1997);  109 105-116
  • 50 Rayle D. L., Cleland R. E.. The acid growth theory of auxin-induced cell elongation is alive and well.  Plant Physiology. (1992);  99 1271-1274
  • 51 Roberts J. K. M., Callis J., Wemmer D., Walbot V., Jardetzky O.. Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia.  Proceedings of the National Academy of Sciences of the USA. (1984);  81 3379-3383
  • 52 Robinson D. G.. Osmiophilic particles at the plasma membrane - what role do they play in extension growth?.  Botanica Acta. (1996);  109 81-83
  • 53 Sabehat A., Lurie S., Weiss D.. Expression of small heat-shock proteins at low temperatures.  Plant Physiology. (1998);  117 651-658
  • 54 Saltveit M. E., Hepler P. K.. Effect of heat shock on chilling sensitivity of trichomes and petioles of African violet (Saintpaulia ionantha). .  Physiologia Plantarum. (2004);  121 35-43
  • 55 Schöffl F., Prändl R., Reindl A.. Regulation of the heat-shock response.  Plant Physiology. (1998);  117 1135-1141
  • 56 Schultz-Lessdorf B., Hedrich R.. Protons and calcium modulate SV-type channels in the vacuolar lysosomal compartment - channel interaction with camodulin inhibitors.  Planta. (1995);  197 655-671
  • 57 Strugger S.. Die Beeinflussung des Wachstums und des Geotropismus durch die Wasserstoffionen.  Berichte der Deutschen Botanischen Gesellschaft. (1932);  50 77-92
  • 58 Vierling E.. The roles of heat shock proteins in plants.  Annual Reviews of Plant Physiology and Plant Molecular Biology. (1991);  42 579-620
  • 59 Volkov R. A., Panchuk J. J., Schöffl F.. Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT‐PCR.  Journal of Experimental Botany. (2003);  54 2343-2349
  • 60 Wang W., Vinocur B., Altman A.. Plant response to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance.  Planta. (2003);  218 1-14
  • 61 Wilkinson S.. pH as a stress signal.  Plant Growth Regulation. (1999);  29 87-99

W. Pfeiffer

Institut für Pflanzenphysiologie
Universität Salzburg

Hellbrunnerstraße 34

5020 Salzburg

Email: wolfgang.pfeiffer@sbg.ac.at

Editor: G. Thiel

    >