Int J Sports Med 2006; 27(10): 834-841
DOI: 10.1055/s-2005-872966
Nutrition

© Georg Thieme Verlag KG Stuttgart · New York

Competition and Food Restriction Effects on Oxidative Stress in Judo

J. Finaud1 , F. Degoutte1 , V. Scislowski2 , M. Rouveix1 , D. Durand2 , E. Filaire1
  • 1Laboratoire de Biologie Interuniversitaire des Activités Physiques et Sportives, Bat Biologie B, Campus des Cézeaux, Aubière Cedex, France
  • 2Institut National de Recherche Agronomique, Unité de Recherches sur les Herbivores, Equipe Nutriments et Métabolismes, INRA de Clermont-Ferrand, Saint-Genes-Champanelle, France
Further Information

Publication History

Accepted after revision: September 20, 2005

Publication Date:
01 February 2006 (online)

Abstract

We examined the effects of weight loss induced by restricting energy and fluid intake on antioxidant status and oxidative stress of judo athletes. Twenty male judoka were randomly assigned to one of two groups (Group A: called diet, n = 10; height 174.8 ± 1.9 cm, body weight 75.9 ± 3.1 kg; they were asked to lose ∼ 5 % of their body weight through self-determined means during the week before the competition; Group B: called control, n = 10; height 176.4 ± 1.1 cm, body weight 73.3 ± 6.3 kg maintained their body weight during the week before the competition). A battery of tests was performed during a baseline period (T1) on the morning of a simulated competition (T2) and 10 minutes after the end of the competition (T3). These tests included assessment for body composition, determination of lag phase (Lp) before free radical induced oxidation, maximum rate of oxidation (Rmax) during the propagating chain reaction and maximum amount of conjugated dienes (CDmax) accumulated after the propagation phase, and lipidic profile. Uric acid concentrations were also evaluated in plasma. Dietary data were collected using a 7-day diet record. We noted that the athletes followed a low carbohydrate diet whatever the period of the investigation. Concerning antioxidant nutrients, we can notice that mean nutritional intakes are in the normal range values for vitamin A, C and E at T1 and T2. Rapid weight loss induced a significant increase in Lp values (p < 0.05) and uric acid concentrations without alterations in oxidative stress. Our data also showed that the competition induced the same changes of oxidative-antioxidant status whatever the dietary intake during the seven days before the competition. Moreover, the effect of the competition on the antioxidant and oxidant parameters was more pronounced than the diet. Theses results could be linked to the food containing a large proportion of PUFA and a relative low proportion of carbohydrates.

References

  • 1 Alessio H M. Exercise-induced oxidative stress.  Med Sci Sports Exerc. 1993;  25 218-224
  • 2 Bloomer R J, Goldfarb A H. Anaerobic exercise and oxidative stress: a review.  Can J Appl Physiol. 2004;  29 245-263
  • 3 Choi J H, Yu B P. Free radical generation and membrane fluidity of aging brain synaptosomes: modulation by dietary restriction.  Free Rad Biol Med. 1995;  18 133-139
  • 4 Dandona P, Mohanty P, Ghanim H. The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leucocytes, lipid peroxidation, and protein carbonylation.  J Clin Endocrinol Metab. 2001;  86 355-362
  • 5 Dekkers J C, van Doornen L J, Kemper H C. The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage.  Sports Med. 1996;  21 213-238
  • 6 Degoutte F, Jouanel P, Bègue R J, Colombier M, Lac G, Pequignot J M, Filaire E. Food restriction, performance, biochemical, psychological, and endocrine changes in judo athletes.  Int J Sports Med. 2005;  DOI: 10.1055/s-2005-837505
  • 7 De Oliveira S L, Diniz D B, Amaya-Farfan J. Carbohydrate-energy restriction may protect the rat brain against oxidative damage and improve physical performance.  Br J Nutr. 2003;  89 89-96
  • 8 Durnin J VDA, Rahaman M M. The assessment of the amount of fat in the human bofy from measurements of skinfold thickness.  Br J Nutr. 1967;  21 681-689
  • 9 Esterbauer H, Striegl G, Puhl H, Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein.  Free Radic Res Commun. 1989;  6 67-75
  • 10 Filaire E, Lac G, Pequignot J M. Biological, hormonal, and psychological parameters in professional soccer players throughout a competitive season.  Percept Motor Skills. 2003;  97 1061-1072
  • 11 Groussard C, Rannou-Bekono F, Machefer G, Chevanne M, Vincent S, Sergent O, Cillard J, Gratas-Delamarche A. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise.  Eur J Appl Physiol. 2003;  89 14-20
  • 12 Ji L L. Antioxidants and oxidative stress in exercise.  Proc Soc Exp Biolo Med. 1999;  222 283-292
  • 13 Jeukendrup A E, Saris W HM, Wagenmakers A JM. Fat metabolism during exercise: a review. Part III: Effects of nutritional interventions.  Int J Sports Med. 1998;  19 371-379
  • 14 Kaur H, Halliwell B. Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products.  Chem-Biol Interact. 1990;  73 235-247
  • 15 Kayatekin B M, Gönenç S, Açikgöz O, Uysal N, Dayi A. Effects of sprint exercise on oxidative stress in skeletal muscle and liver.  Eur J Appl Physiol. 2002;  87 141-144
  • 16 Kim J D, Mc Carter R JM, Yu B P. Influence of age, exercise, and dietary restriction on oxidative stress in rats.  Aging Clin Exp Res. 1996;  8 123-129
  • 17 Koizumi A, Weindruch R, Walfrod R L. Influences of dietary restriction and age on liver enzyme activities and lipid peroxidation in mice.  J Nutr. 1987;  117 361-367
  • 18 Margaritis I, Palazzetti S, Rousseau A S, Richard M J, Favier A. Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response.  J Am Coll Nutr. 2003;  22 147-156
  • 19 Matsuo M, Gomi F, Kuramoto K, Sagai M. Caloric restriction suppresses age-dependent increases in the respired rates of hydrocarbon from rat.  J Geront Biol Sci. 1993;  48 B133-B138
  • 20 McBride J M, Kraemer W J, Triplett-McBride T. Effect of resistance exercise on free radical production.  Med Sci Sports Exerc. 1998;  30 67-72
  • 21 Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, Haga S, Ji L L, Ohno H. Strenuous endurance training in humans reduces oxidative stress following exhaustive exercise.  Eur J Appl Physiol. 2001;  84 1-6
  • 22 Mohn A, Catino M, Capanna R, Giannini C, Marcovecchio M, Chiarelli F. Increased oxidative stress in prepubertal severely obese children: effect of a dietary restriction-weight loss program.  J Endocrinol Metabol. 2005;  10 2653-2658
  • 23 Ortenblad N, Madsen K, Djurhuus M S. Antioxidant status and lipid peroxidation after short-term maximal exercise in trained and untrained humans.  Am J Physiol. 1997;  272 R1258-R1263
  • 24 Peres G. Physiologie de l'exercice musculaire et nutrition du sportif. In : Brunet-Guedj E, Comtet B, Genety J. Abrégé de Médecine du Sport. 6th edn. Paris; Masson 2000
  • 25 Powers S K, De Ruisseau K, Quindry J, Hamilton K. Dietary antioxidants and exercise.  J Sports Sci. 2004;  22 81-94
  • 26 Schnitzer E, Pinchuk I, Fainaru M, Schafer Z, Lichtenberg D. Copper-induced lipid oxidation in unfractionated plasma: the lag preceding oxidation as a measure of oxidation-resistance.  Biochem Biophys Res Commun. 1995;  216 854-861
  • 27 Selamoglu S, Turgay F, Kayatekin B M. et al . Aerobic and anaerobic training effects on the antioxidant enzymes in the blood.  Acta Physiol Hung. 2000;  87 267-273
  • 28 Sjödin B, Hellsten Westing Y, Apple G S. Biochemical mechanism for oxygen free radical formation during exercise.  Sports Med. 1990;  10 236-254
  • 29 Su-vi-max. Portions alimentaires, Manuel photos pour l'estimation des quantités. “Food portions, Manual photos for the evaluation of quantities”. Candia e.d. Paris; Polytechnica 1994
  • 30 Suzuki M, Nakaji S, Umeda T, Shimoyama T, Mochida N, Kojima A, Mashiko T, Sugawara K. Effects of weight reduction on neutrophil phagocytic activity and oxidative burst activity in female judoists.  Luminescence. 2003;  18 214-217
  • 31 Svensson M, Ekblom B, Cotgreave I, Norman B, Sjöberg B, Ekblom Ö, Sjödin B, Sjödin A. Adaptative stress response of glutathione and acid uric metabolism in man following controlled exercise and diet.  Acta Physiol Scand. 2002;  176 43-56
  • 32 Tarnopolsky M A, Cipriano C, Woodcroft C, Pulkkinen W J, Robinson D, Henderson J, MacDougall J D. The effects of rapid weight loss and wrestling on muscle glycogen concentration.  Clin J Sport Med. 1996;  6 78-84
  • 33 Venkatraman J T, Angkeow P, Satsangi N, Fernandes G. Effects of dietary n-6 and n-3 lipids on antioxidant defense system in livers of exercised rats.  J Am Coll Nutr. 1998;  6 586-594
  • 34 Vincent K R, Vincent H K, Braith R W. et al . Resistance exercise training attenuates exercise-induced lipid peroxidation in the elderly.  Eur J Appl Physiol. 2002;  87 416-423
  • 35 Wayner D DM, Burton G W, Ingold K U, Barclay L RC, Locke S J. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma.  Biochim Biophys Acta. 1987;  924 408-419
  • 36 Yu B P, Chung H Y. Stress resistance by caloric restriction for longevity.  Ann NY Acad Sci. 2001;  928 39-41

Edith Filaire

UFRSTAPS Campus des Cézeaux

BP 104

63177 Aubière Cedex

France

Phone: + 33473407679

Fax: + 33 47 34 05 62

Email: efilaire@nat.fr