Abstract
A multi-sensor system is described based on fiber optic technology and a diode array spectrometer for near-simultaneous measurement of spectral photon fluence rates (PFR) in the range of 360 nm to 1020 nm with a resolution of 0.8 nm, within a mature Norway spruce (Picea abies [L.] Karst.) - European beech (Fagus sylvatica L.) stand. 126 space-integrating spherical sensors, deployed in a regular grid above and within the canopy and on the forest floor, are sequentially connected to the spectrometer by means of fiber optics. About 1 s per sensor is needed to collect spectral data, store them on hard disk and move the channel multiplexer to the next fiber optic position. Data thus obtained serve to determine vertical profiles of wavelength-dependent photon extinction, especially for spectral ratios and wavebands, characterization of phenological stages, analyses of time series, and meteorological influences such as solar altitude and cloud cover. First measurements during leaf fall 2004 show a non-linear relation of the red/far-red ratio (R/FR) with relative photosynthetic PFR (PPFRrel ). An analysis of relative PFR (PFRrel ) quantifies the frequency of penumbral sunfleck occurrence and the fraction of incoming radiation on the forest floor. In-canopy measurements of daily means of PPFRrel and R/FR indicate that leaf unfolding and leaf fall can be described by a single sensor, independent of its vertical location within the canopy.
Key words
Solar radiation - photon fluence rate - red/far-red ratio - fiber optic sensor - spectral analysis - forest - beech - spruce.
References
1
Aaslyng J. M., Rosenqvist E., Høgh-Schmidt K..
A sensor for microclimatic measurement of photosynthetically active radiation in a plant canopy.
Agricultural and Forest Meteorology.
(1999);
96
189-197
2
Ammer C..
Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation.
Annals of Forest Science.
(2003);
60
163-171
3 Ammer C.. Untersuchungen zum Einfluss von Fichtenaltbeständen auf die Entwicklung junger Buchen. Aachen; Shaker Verlag (2000)
4
Baldocchi D. D., Matt D. R., Hutchinson B. A., McMillen R. T..
Solar radiation within an oak-hickory forest: an evaluation of the extinction coefficients for several radiation components during fully-leafed and leafless periods.
Agricultural and Forest Meteorology.
(1984);
32
307-322
5 Bernhard G.. Einfluß von Diffusor-Eigenschaften auf die Bestimmung von Bestrahlungsstärken im UV-Bereich: Versuchsaufbau, Messung und Korrekturverfahren. Garmisch-Partenkirchen; IFU Schriftenreihe (1993)
6
Björn L. O..
Estimation of fluence rate from irradiance measurements with a cosine-corrected sensor.
Journal of Photochemistry and Photobiology B: Biology.
(1995);
29
179-183
7
Björn L. O., Vogelmann T. C..
Quantifying light and ultraviolet radiation in plant biology.
Photochemistry and Photobiology.
(1996);
64
403-406
8
Byrne G. F..
A simple way of improving the angular response of solid-state photodetectors.
Agricultural Meteorology.
(1966);
3
367-368
9
Capers R. S., Chazdon R. L..
Rapid assessment of understory light availability in a wet tropical forest.
Agricultural and Forest Meteorology.
(2004);
123
177-185
10
Combes D., Sinoquet H., Varlet-Grancher C..
Preliminary measurement and simulation of the spatial distribution of the Morphogenetically Active Radiation (MAR) within an isolated tree canopy.
Annals of Forest Science.
(2000);
57
497-511
11
Constabel A. J., Lieffers V. J..
Seasonal patterns of light transmission through boreal mixedwood canopies.
Canadian Journal of Forest Research.
(1996);
26
1008-1014
12
De Castro F..
Light spectral composition in a tropical forest: measurements and model.
Tree Physiology.
(2000);
20
49-56
13
Dohrenbusch A..
Überlegungen zur Optimierung der Strahlungsmessung im Wald.
Allgemeine Forst- und Jagdzeitung.
(1995);
6
109-114
14
Endler J. A..
The color of light and its implications.
Ecological Monographs.
(1993);
63
1-27
15
Federer C. A., Tanner C. B..
Spectral distribution of light in the forest.
Ecology.
(1966);
47
555-560
16
Grant R. H..
Partitioning of biologically active radiation in plant canopies.
International Journal of Biometeorology.
(1997);
40
26-40
17
Gutschick V. P., Barron M. H., Waechter D. A., Wolf M. A..
Portable monitor for solar radiation that accumulates irradiance histograms for 32 leaf-mounted sensors.
Agricultural and Forest Meteorology.
(1985);
33
281-290
18 Hartmann K. M.. Aktionsspektrometrie. Hoppe, W., Lohmann, W., Markl, H., and Ziegler, H., eds. Biophysik - Ein Lehrbuch. Berlin, Heidelberg, New York; Springer Verlag (1978): 197-222
19 Holmes M. G.. Spectral distribution of radiation within plant canopies. Smith, H., ed. Plants and The Daylight Spectrum. London, New York, Toronto, Sydney, San Fransisco; Academic Press (1981): 147-158
20
Hutchinson B. A., Matt D. R., McMillen R. T..
Effect of sky brightness distribution upon penetration of diffuse radiation through canopy gaps in a deciduous forest.
Agricultural Meteorology.
(1980);
22
137-147
21
Lee D. W..
The spectral distribution of radiation in two neotropical rainforests.
Biotropica.
(1987);
19
161-166
22
McCree K. J..
The action spectrum, absorptance and quantum yield of photosynthesis in crop plants.
Agricultural Meteorology.
(1972);
9
191-216
23
Messier C., Bellefleur P..
Light quantity and quality on the forest floor of pioneer and climax stages in a birch-beech-sugar maple stand.
Canadian Journal of Forest Research.
(1988);
18
615-622
24
Monsi M., Saeki T..
Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion.
Japanese Journal of Botany.
(1953);
14
22-52
25
Muraoka H., Hirota H., Matsumoto J., Nishimura S., Tang Y., Koizumi H., Washitani I..
On the convertibility of different microsite light availability indices, relative illuminance and relative photon flux density.
Functional Ecology.
(2001);
15
798-803
26
Ögren E., Sjöström M..
Estimation of the effect of photoinhibition on the carbon gain in leaves of a willow canopy.
Planta.
(1990);
181
560-567
27
Olesen T..
Daylight spectra (400 - 740 nm) beneath sunny, blue skies in Tasmania, and the effect of a forest canopy.
Australian Journal of Ecology.
(1992);
17
451-461
28
Palva L., Garam E., Manoochehri F., Seppoenen R., Hari P., Rajala K., Ruotoistenmäki H., Seppälä I..
A novel multipoint measuring system of photosynthetically active radiation.
Agricultural and Forest Meteorology.
(1998);
89
141-147
29 Reiter I. M.. Space-related resource investments and gains of adult beech (Fagus sylvatica) and spruce (Picea abies) as a quantification of aboveground competitiveness. PhD Thesis, Technical University of Munich. (2004)
30 Reitmayer H.. Quantifizierung des spektralen Angebotes photosynthetisch aktiver Strahlung (PAR) innerhalb eines Fichten-Buchen-Mischbestandes. PhD Thesis, Technical University of Munich. (2000)
31
Reitmayer H., Werner H., Fabian P..
A novel system for spectral analysis of solar radiation within a mixed beech-spruce stand.
Plant Biology.
(2002);
4
228-233
32
Ross M. S., Flanagan L. B., La Roi G. H..
Seasonal and successional changes in light quality and quantity in the understory of boreal forest ecosystems.
Canadian Journal of Botany.
(1986);
64
2792-2799
33
Smith H..
Phytochromes and light signal perception by plants - an emerging synthesis.
Nature.
(2000);
407
585-591
34 Smith H.. Sensing the light environment: the functions of the phytochrome family. Kendrick, R. E. and Kronenberg, G. H. M., eds. Photomorphogenesis in Plants, 2nd edition. Dordrecht, Boston, London; Kluwer Academic Publishers (1994): 377-416
35
Smith H..
Light quality, photoperception, and plant strategy.
Annual Review of Plant Physiology.
(1982);
33
481-518
36 Smith H., Morgan D. C.. The spectral characteristics of the visible radiation incident upon the surface of the earth. Smith, H., ed. Plants and The Daylight Spectrum. London, New York, Toronto, Sydney, San Fransisco; Academic Press (1981): 3-20
37
Wirth R., Weber B., Ryel R. J..
Spatial and temporal variability of canopy structure in a tropical moist forest.
Acta Oecologica.
(2001);
22
235-244
M. Leuchner
Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt/Ökoklimatologie Technische Universität München
Am Hochanger 13
85354 Freising
Germany
Email: leuchner@met.forst.tu-muenchen.de
Guest Editor: R. Matyssek