Plant Biol (Stuttg) 2005; 7(6): 670-676
DOI: 10.1055/s-2005-873001
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Transcriptome Analysis of Ozone-Responsive Genes in Leaves of European Beech (Fagus sylvatica L.)

M. Olbrich[*] 1 , G. Betz[*] 1 , E. Gerstner1 , C. Langebartels1 , H. Sandermann1 , D. Ernst1
  • 1GSF - National Research Center for Environment and Health, Institute of Biochemical Plant Pathology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
Further Information

Publication History

Received: April 28, 2005

Accepted: October 25, 2005

Publication Date:
02 January 2006 (online)

Abstract

Suppression subtractive hybridization (SSH) was performed to isolate cDNAs representing genes that are differentially expressed in leaves of Fagus sylvatica upon ozone exposure. 1248 expressed sequence tags (ESTs) were obtained from 2 subtractive libraries containing early and late ozone-responsive genes. Sequences of 1139 clones (91 %) matched the EBI/NCBI database entries. For 578 clones, no putative function could be assigned. Most abundant transcripts were O-methyltransferases, representing 7 % of all sequenced clones. ESTs were organized into 12 functional categories according to the MIPS database. Among them, 12 % (early)/15 % (late) were associated with disease and defence, 19/11 % with cell structure, 4/10 % with signal transduction, and 9/6 % with transcription. The expression pattern of selected ESTs (ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit [rbcS], WRKY-type transcription factor, ultraviolet-B-repressible protein, aquaporine, glutathione S-transferase, catalase, caffeic acid O-methyltransferase, and pathogenesis-related protein 1 [PR1]) was analysed by quantitative real-time RT‐PCR (qRT‐PCR) which confirmed changed transcript levels upon ozone treatment of European beech saplings. The ESTs characterized will contribute to a better understanding of forest tree genomics and also to a comparison of ozone-responsive genes in woody and herbaceous plants.

References

  • 1 Asiegbu F. O., Nahalkova J., Li G.. Pathogen-inducible cDNAs from the interaction of the root rot fungus Heterobasidion annosum with Scots pine (Pinus sylvestris L.).  Plant Science. (2004);  168 365-372
  • 2 Bhalerao R., Keskitalo J., Sterky F., Erlandsson R., Björkbacka H., Birve S. J., Karlsson J., Gardeström P., Gustafsson P., Lundeberg J., Jansson S.. Gene expression in autumn leaves.  Plant Physiology. (2003);  131 430-442
  • 3 Chiron H., Drouet A., Claudot A.-C., Eckerskorn C., Trost M., Heller W., Ernst D., Sandermann H.. Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.).  Plant Molecular Biology. (2000);  44 733-745
  • 4 Diatchenko L., Lau Y. F. C., Campell A. P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K., Gurskaya N., Sverdlov E. D., Siebert P. D.. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries.  Proceedings of the National Academy of Sciences of the USA. (1996);  93 6025-6030
  • 5 Ernst D., Grimmig B., Heidenreich B., Schubert R., Sandermann H.. Ozone-induced genes: mechanisms and biotechnological applications. Smallwood, M. F., Calvert, C. M., and Bowles, D., eds. Plant Responses to Environmental Stress. Oxford; BIOS Scientific Publishers (1999): 33-41
  • 7 Ernst D., Aarts M.. Cis elements and transcription factors regulating gene promoters in response to environmental stress. Sandermann, H., ed. Molecular Ecotoxicology of Plants. Berlin, Heidelberg; Springer-Verlag (2004): 151-176
  • 8 Glick R. E., Schlagnhaufer C. D., Arteca R. N., Pell E. J.. Ozone-induced ethylene emission accelerates the loss of ribulose-1, 5-bisphosphate carboxylase/oxygenase and nuclear-encoded mRNAs in senescing potato leaves.  Plant Physiology. (1995);  109 891-898
  • 9 Grams T. E. E., Kozovits A. R., Reiter M., Winkler J. B., Sommerkorn M., Blaschke H., Häberle K.-H., Matyssek R.. Quantifying competitiveness in woody plants.  Plant Biology. (2002);  4 153-158
  • 10 Heidenreich B., Mayer K., Sandermann H., Ernst D.. Mercury-induced genes in Arabidopsis thaliana: identification of induced genes upon long-term mercuric ion exposure.  Plant, Cell and Environment. (2001);  24 1227-1234
  • 11 Huang X., von Rad U., Durner J.. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cultures.  Planta. (2002);  215 914-923
  • 12 Kangasjärvi J., Talvinen J., Utriainen M., Karjalainen R.. Plant defence systems induced by ozone.  Plant, Cell and Environment. (1994);  17 783-794
  • 13 Kärenlampi L., Skärby L.. Critical levels for ozone in Europe: testing and finalizing the concepts. UN‐ECE workshop report, University of Kuopio, Kuopio, Finland. (1996)
  • 14 Kiefer E., Heller W., Ernst D.. A simple and efficient protocol for isolation of functional RNA from plant tissue rich in secondary metabolites.  Plant Molecular Biology Reporter. (2000);  18 33-39
  • 15 Kley D., Kleinman M., Sandermann H., Krupa S.. Photochemical oxidants: state of the science.  Environmental Pollution. (1999);  100 19-42
  • 16 Koch J. R., Scherzer A. J., Eshita S. M., Davis K. R.. Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation.  Plant Physiology. (1998);  118 1243-1252
  • 17 Langebartels C., Heller W., Ernst D., Lütz C., Payer H.-D., Sandermann H.. Ozone responses of trees: results from controlled chamber exposures at the GSF phytotron. Sandermann, H., Wellburn, A. R., and Heath, R. L., eds. Forest Decline and Ozone: A Comparison of Controlled Chamber and Field Experiments , Ecol. Studies No. 127,. Berlin; Springer (1997): 163-200
  • 18 Langebartels C., Schraudner M., Heller W., Ernst D., Sandermann H.. Oxidative stress and defense reactions in plants exposed to air pollutants and UV‐B radiation. Inzé, D. and Van Montagu, M., eds. Oxidative Stress in Plants. London, New York; Taylor & Francis (2002): 105-135
  • 19 Ludwikow A., Gallois P., Sadowski J.. Ozone-induced oxidative stress response in Arabidopsis: transcription profiling by microarray approach.  Cellular and Molecular Biology Letters. (2004);  9 829-842
  • 20 Mahalingam R., Gomez-Buitrago A., Eckardt N., Shah N., Guevara-Garcia A., Day P., Raina R., Fedoroff N. V.. Characterizing the stress/defense transcriptome of Arabidopsis.  Genome Biology. (2003);  4 R20
  • 21 Matyssek R., Sandermann H.. Impact of ozone on trees: an ecophysiological perspective.  Progress in Botany. (2003);  64 349-404
  • 22 Matyssek R., Wieser G., Nunn A. J., Kozovits A. R., Reiter I. M., Heerdt C., Winkler J. B., Baumgarten M., Häberle K.-H., Grams T. E. E., Werner H., Fabian P., Havranek W. M.. Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions.  Atmospheric Environment. (2004);  38 2271-2281
  • 23 Nunn A. J., Anegg S., Betz G., Simons S., Kalisch G., Seidlitz H., Grams T. E. E., Häberle K.-H., Matyssek R., Bahnweg G., Sandermann H., Langebartels C.. Role of ethylene in the regulation of cell death and leaf loss in ozone-exposed European beech.  Plant, Cell and Environment. (2005);  28 886-897
  • 24 Pell E. J., Schlagnhaufer C. D., Arteca R. N.. Ozone-induced oxidative stress: mechanisms of action and reaction.  Physiologia Plantarum. (1997);  100 264-273
  • 25 Pellinen R., Palva T., Kangasjärvi J.. Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells.  The Plant Journal. (1999);  20 349-356
  • 26 Pfaffl M. W., Horgan G. W., Dempfle L.. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR.  Nucleic Acids Research. (2002);  30 e36
  • 27 Plessl M., Rigola D., Hassinen V., Aarts M. G. M., Schat H., Ernst D.. Transcription profiling of the metal-hpyeraccumulator Thlaspi caerulescens (J. & C. PRESL).  Biosciences. (2005);  60 216-223
  • 28 Rao M. V., Davis K. R.. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid.  The Plant Journal. (1999);  17 603-614
  • 29 Rishi A. S., Munir S., Kapur V., Nelson N. D., Goyal A.. Identification and analysis of safener-inducible expressed sequence tags in Populus using a cDNA microarray.  Planta. (2004);  220 296-306
  • 30 Sahr T., Voigt G., Paretzke H. G., Schramel P., Ernst D.. Caesium-affected gene expression in Arabidopsis thaliana. .  New Phytologist. (2005);  165 747-754
  • 31 Sandermann H., Wellburn A. R., Heath R. L.. Forest Decline and Ozone. Berlin, Heidelberg, New York; Springer-Verlag (1997)
  • 32 Sandermann H., Ernst D., Heller W., Langebartels C.. Ozone: an abiotic elicitor of plant defence reactions.  Trends in Plant Science. (1998);  3 47-50
  • 33 Sandermann H., Matyssek R.. Scaling up from molecular to ecological processes. Sandermann, H., ed. Molecular Ecotoxicology of Plants. Berlin, Heidelberg; Springer-Verlag (2004): 207-226
  • 34 Sävenstrand H., Brosché M., Ängehagen M., Strid A.. Molecular markers for ozone stress isolated by suppression subtractive hybridization: specificity of gene expression and identification of a novel stress-regulated gene.  Plant, Cell and Environment. (2000);  23 689-700
  • 35 Sävenstrand H., Brosché M., Strid A.. Regulation of gene expression by low levels of ultraviolet-B radiation in Pisum sativum: Isolation of novel genes by suppression subtractive hybridisation.  Plant and Cell Physiology. (2002);  43 402-410
  • 36 Schneiderbauer A., Back E., Sandermann H., Ernst D.. Ozone induction of extensin mRNA in Scots pine, Norway spruce and European beech.  New Phytolologist. (1995);  130 225-230
  • 37 Schraudner M., Langebartels C., Sandermann H.. Changes in the biochemical status of plant cells induced by the environmental pollutant ozone.  Physiologia Plantarum. (1997);  100 274-280
  • 38 Schütt P., Schuck H. J., Stimm B.. Lexikon der Forstbotanik. Landsberg; Ecomed (1992)
  • 39 Sharma Y. K., Davis K. R.. The effects of ozone on antioxidant responses in plants.  Free Radical Biology and Medicine. (1997);  23 480-488
  • 40 Simons S.. Biochemische Effekte und Symptomentwicklung bei Buchen (Fagus sylvatica L.) und Nadelgehölzen unter realen und proportional erhöhten Ozonkonzentrationen. PhD thesis, Ludwig-Maximilians-Universität München. (1993)
  • 41 Tamaoki M., Nakajima N., Kubo A., Aono M., Matsuyama T., Saji H.. Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression.  Plant Molecular Biology. (2003);  53 443-456

1 * Both authors contributed equally to this work

D. Ernst

GSF - National Research Center for Environment and Health
Institute of Biochemical Plant Pathology

Ingolstädter Landstraße 1

85764 Neuherberg

Germany

Email: ernst@gsf.de

Guest Editor: R. Matyssek