Abstract
Spring barley (Hordeum vulgare L. cv. Scarlett) was grown at two CO2 levels (400 vs. 700 ppm) combined with two ozone regimes (ambient vs. double ambient)
in climate chambers for four weeks, beginning at seedling emergence. Elevated CO2 concentration significantly increased aboveground biomass, root biomass, and tiller
number, whereas double ambient ozone significantly decreased these parameters. These
ozone-induced reductions in growth parameters were strongly overridden by 700 ppm
CO2 . The elevated CO2 level increased C : N ratio of the leaf tissue and leaf starch content but decreased
leaf protein levels. Exposure to double ambient ozone did not affect protein content
and C : N ratio but dramatically increased leaf starch levels at 700 ppm CO2 . Resistance against Drechslera teres (Sacc.) Shoemaker was increased in leaves grown at double ambient ozone but was less
obvious at 700 ppm than at 400 ppm CO2 . Constitutive activities of β‐1,3-glucanase and chitinase were significantly higher
in leaves grown at double ambient ozone compared to ambient ozone levels. The sum
of methanol-soluble and alkali-released cell wall-bound aromatic metabolites (i.e.,
C -glycosylflavones and several structurally unidentified metabolites) and lignin contents
did not show any treatment-dependent differences.
Key words
Net blotch disease (Drechslera teres)
-
Hordeum vulgare
- induced resistance - PR proteins
References
1
Able A. J..
Role of reactive oxygen species in the response of barley to necrotrophic pathogens.
Protoplasma.
(2003);
221
137-143
2
Adaros G., Weigel H. J., Jäger H. J..
Growth and yield of spring rape and spring barley as affected by chronic ozone stress.
Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz.
(1991);
98
513-525
3
Allen L. H..
Plant response to rising carbon dioxide and potential interactions with air pollutants.
Journal of Environmental Quality.
(1990);
19
15-34
4
Arabi M. I. E., Al-Safadi B., Charbaji T..
Pathogenic variation among isolates of Pyrenophora teres, the causal agent of barley net blotch.
Journal of Phytopathology.
(2003);
151
376-382
5 Beutler H. O..
Starch. Bergmeyer, H. U., Bergmeyer, J., and Graßl, M., eds. Methods of Enzymatic Analysis,
Vol. VI. Metabolites 1: Carbohydrates. Weinheim; Verlag Chemie (1984): 2-10
6
Black V. J., Black C. R., Roberts J. A., Stewart C. A..
Impact of ozone on the reproductive development of plants.
New Phytologist.
(2000);
147
421-447
7
Blatter R. H. E., Brown J. K. M., Wolfe M. S..
Genetic control of the resistance of Erysiphe graminis f. sp. hordei to five triazole fungicides.
Plant Pathology.
(1998);
47
570-579
8
Bowling S. A., Guo A., Cao H., Gordon A. S., Klessig D. F., Dong X..
A mutation of Arabidopsis that leads to constitutive expression of systemic acquired resistance.
Plant Cell.
(1994);
6
1845-1857
9
Bradford M. M..
A rapid and sensitive method for the quantification of microgram quantities of protein
utilising the principle of a protein-dye binding.
Analytical Biochemistry.
(1976);
72
248-254
10
Bruce R. J., West C. A..
Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments
in suspension cultures of castor bean.
Plant Physiology.
(1989);
91
889-897
11 BWB .Baden-Württembergischer Brauerbund e. V. (annual report). (2001)
12
Cardoso-Vilhena J., Barnes J..
Does nitrogen supply affect the response of wheat (Triticum aestivum cv. Hanno) to the combination of elevated CO2 and O3 ?.
Journal of Experimental Botany.
(2001);
52
1901-1911
13
Chang T. T., Konzak C. F., Zadoks J. C..
A decimal code for the growth stages of cereals.
Weed Research.
(1974);
14
415-421
14
Cooley D. R., Manning W. J..
The impact of ozone on assimilate partitioning in plants: a review.
Environmental Pollution.
(1987);
47
95-113
15
Craigon J., Fangmeier A., Jones M., Donnelly A., Bindi M., De Temmermann L., Persson K.,
Ojanpera K..
Growth and marketable-yield responses of potato to increased CO2 and ozone.
European Journal of Agronomy.
(2002);
17
273-289
16
Deimel H., Hoffmann G. M..
Detrimental effects of net blotch disease to barley plants caused by Drechslera teres (Sacc.) Shoemaker.
Journal of Plant Diseases and Protection.
(1991);
98
137-161
17
Dohmen G. P..
Secondary effects of air pollution: ozone decreases brown rust disease potential in
wheat.
Environmental Pollution.
(1987);
43
189-194
18
Donnelly A., Jones M. B., Burke J. I., Schnieders B..
Does elevated CO2 protect grain yield of wheat from the effects of ozone stress?.
Zeitschrift für Naturforschung.
(1999);
54c
802-811
19
Donnelly A., Jones M. B., Burke J. I., Schnieders B..
Elevated CO2 provides protection from O3 induced photosynthetic damage and chlorophyll loss in flag leaves of spring wheat
(Triticum aestivum L. cv. Minaret).
Agriculture, Ecosystems and Environment.
(2000);
80
159-168
20
Donnelly A., Craigon J., Black C. R., Colls J. J., Landon G..
Does elevated CO2 ameliorate the impact of O3 on chlorophyll content and photosynthesis in potato (Solanum tuberosum) ?.
Physiologia Plantarum.
(2001);
111
501-511
21
Drake B. M., Gonzalez-Meler M., Long S. P..
More efficient plants: a consequence of rising atmospheric CO2 .
Annual Review of Plant Physiology and Plant Molecular Biology.
(1997);
48
607-637
22
Eckey-Kaltenbach H., Großkopf E., Sandermann H., Ernst D..
Induction of pathogen defence genes in parsley (Petroselinum crispum L.) plants by ozone.
Proceedings of the Royal Society of Edinburgh.
(1994);
102B
63-74
23
Ernst D., Schraudner M., Langebartels C., Sandermann H..
Ozone-induced changes of mRNA levels of β‐1, 3-glucanase, chitinase and pathogenesis-related
protein 1b in tobacco plants.
Plant Molecular Biology.
(1992);
20
673-682
24
Estiarte M., Penuelas J., Kimball B. A., Hendrix D. L., Pinter D. L., Wall G. W.,
LaMorte R. L., Hunsaker D. J..
Free-air CO2 enrichment of wheat: leaf flavonoid concentration throughout the growth cycle.
Physiologia Plantarum.
(1999);
105
423-433
25
Fangmeier A., Brockerhoff U., Gruters U., Jäger H. J..
Growth and yield responses of spring wheat (Triticum aestivum L. cv. Turbo) grown in open-top chambers to ozone and water stress.
Environmental Pollution.
(1994);
91
317-325
26
Fangmeier A., Chrost B., Högy P., Krupinska K..
CO2 enrichment enhances flag leaf senescence in barley due to greater grain nitrogen
sink capacity.
Environmental and Experimental Botany.
(2000);
44
151-164
27
Grantz D. A., Farrar J. F..
Acute exposure to ozone inhibits rapid carbon translocation from source leaves of
Pima cotton.
Journal of Experimental Botany.
(1999);
50
1253-1262
28 Habermeyer J., Gerhard M.. Pilzkrankheiten und Schadsymptome im Getreidebau. Limburgerhof,
Germany; BASF AG (1997)
29
Heagle A. S., Key L. W..
Effect of ozone on the wheat stem rust fungus.
Phytopathology.
(1973);
63
397-400
30
Heagle A. S., Spencer S., Letchworth M. B..
Yield response of winter wheat to chronic doses of ozone.
Canadian Journal of Botany.
(1979);
57
1999-2005
31
Heagle A. S., Miller J. E., Pursley W. A..
Influence of ozone stress on soybean response to carbon dioxide enrichment. III. Yield
and seed quality.
Crop Science.
(1998);
38
128-134
32
Heagle A. S., Miller J. E., Booker F. L., Pursley W. A..
Ozone stress, carbon dioxide enrichment and nitrogen fertility interactions in cotton.
Crop Science.
(1999);
39
731-741
33
Heagle A. S., Miller J. E., Pursley W. A..
Growth and yield responses of winter wheat to mixtures of ozone and carbon dioxide.
Crop Science.
(2000);
40
1656-1664
34 Heath R. L., Taylor G. E..
Physiological processes affecting plant responses to ozone exposure. Sandermann, H., Wellburn, A. R., and Heath, R. L., eds. Forest Decline and Ozone:
A Comparison of Controlled Chamber and Field Experiments. New York; Springer-Verlag
(1997): 317-368
35
Heil M., Baldwin I. T..
Fitness costs of induced resistance: emerging experimental support for a slippery
concept.
Trends in Plant Science.
(2002);
7
61-67
36
Heil M., Hilpert A., Kaiser W., Linsenmair K. E..
Reduced growth and seed set following chemical induction of pathogen defence: does
systemic acquired resistance (SAR) incur allocation costs?.
Journal of Ecology.
(2000);
88
645-654
37
Herms D. A., Mattson W. J..
The dilemma of plants: to grow or to defend.
The Quarterly Review of Biology.
(1992);
67
283-335
38
Hibberd J. M., Whitbread R., Farrar J. F..
Effect of elevated concentrations of CO2 on infection of barley by Erysiphe graminis .
Physiological and Molecular Plant Pathology.
(1996);
48
37-53
39 IPCC .
Climate Change 2001. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., and
Xiaosu, D., eds. The Scientific Basis , Contribution of Working Group I to the Third
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge,
UK; Cambridge University Press (2001)
40
Jonsson R., Bryngelsson T., Jalli M., Gustafsson M..
Effect of growth stage on resistance to Drechslera teres f. teres in barley.
Journal of Phytopathology.
(1998);
146
261-265
41
Kangasjärvi J., Talvinen J., Utriainen M., Karjalainen R..
Plant defence systems induced by ozone.
Plant, Cell and Environment.
(1994);
17
783-794
42
Keen N. T., Yoshikawa M..
β‐1, 3-Glucanase from soybean releases elicitor-active carbohydrates from fungus cell
walls.
Plant Physiology.
(1983);
71
460-465
43
Kimball B. A..
Carbon dioxide and agricultural yield: assemblage and analysis of 430 prior observations.
Agron Journal.
(1983);
75
779-788
44
Kogel K. H., Beckhove U., Dreschers J., Münch S., Rommé Y..
Acquired resistance in barley.
Plant Physiology.
(1994);
106
1269-1277
45
Krupa S., McGrath M. T., Andersen C. P., Booker F. L., Burkey K. O., Chappelka A. H.,
Chevone B. I., Pell E. J., Zilinskas B. A..
Ambient ozone and plant health.
Plant Disease.
(2000);
85
4-12
46
Lever M..
A new reaction for colorimetric determination of carbohydrates.
Analytical Biochemistry.
(1972);
47
273-279
47
Makino A., Harada M., Sato T., Nakano H., Mae T..
Growth and N allocation in rice plants under CO2 enrichment.
Plant Physiology.
(1997);
115
199-203
48
Makino A., Mae T..
Photosynthesis and plant growth at elevated levels of CO2 .
Plant and Cell Physiology.
(1999);
40
999-1006
49
Manning W., Tiedemann A..
Climate change: potential effects of increased atmospheric carbon dioxide, ozone and
ultraviolet-B radiation on plant disease.
Environmental Pollution.
(1995);
88
219-245
50
Marenco A., Gouget H., Nedelec P., Pages J. P., Karcher F..
Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series
- consequences: positive radiative forcing.
Journal of Geophysical Research.
(1994);
99
16617-16632
51
Martín-Olmedo P., Rees R. M., Grace J..
The influence of plants grown under elevated CO2 and N fertilization on soil nitrogen dynamics.
Global Change Biology.
(2002);
8
643-657
52
Matyssek R., Schnyder H., Elstner E. F., Munch J. C., Pretzsch H., Sandermann H..
Growth and parasite defence in plants: the balance between resource sequestration
and retention: in lieu of a guest editorial.
Plant Biology.
(2002);
4
133-136
53
McCrady J. K., Andersen C. P..
The effect of ozone on below-ground carbon allocation in wheat.
Environmental Pollution.
(2000);
107
465-472
54
McKee I. F., Mulholland B. J., Craigon J., Black C. R., Long S. P..
Elevated concentrations of atmospheric CO2 protect against and compensate for O3 damage to photosynthetic tissues of field-grown wheat.
New Phytologist.
(2000);
146
427-435
55
Meyer U., Köllner B., Willenbrink J., Krause G. H. M..
Effects of different ozone exposure regimes on photosynthesis, assimilates and thousand
grain weight in spring wheat.
Agriculture, Ecosystems and Environment.
(2000);
78
49-55
56
Miller J. E., Heagle A. S., Pursley W. A..
Influence of ozone stress on soybean response to carbon dioxide enrichment. II. Biomass
and development.
Crop Science.
(1998);
38
122-128
57
Mulholland B. J., Craigon J., Black C. R., Colls J. J., Atherton J., Landon G..
Effects of elevated carbon dioxide and ozone on the growth and yield of spring wheat
(Triticum aestivum L.).
Journal of Experimental Botany.
(1997 a);
48
113-122
58
Mulholland B. J., Craigon J., Black C. R., Colls J. J., Atherton J., Landon G..
Impact of elevated atmospheric CO2 and O3 on gas exchange and chlorophyll content of spring wheat (Triticum aestivum L.).
Journal of Experimental Botany.
(1997 b);
48
1853-1863
59
Mulholland B. J., Craigon J., Black C. R., Colls J. J., Atherton J., Landon G..
Growth, light interception and yield responses of spring wheat (Triticum aestivum L.) grown under elevated CO2 and O3 in open top chambers.
Global Change Biology.
(1998);
4
121-130
60
Nakano H., Makino A., Mae T..
The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves.
Plant Physiology.
(1997);
115
191-198
61
Ollerenshaw J. H., Lyons T., Barnes J. D..
Impacts of ozone on the growth and yield of field-grown winter oilseed rape.
Environmental Pollution.
(1999);
104
53-59
62 Payer H. D., Blodow P., Köfferlein M., Lippert M., Schmolke W., Seckmeyer G., Seidlitz H.,
Strube D., Thiel S..
Controlled environment chambers for experimental studies on plant responses to CO2 and interactions with pollutants. Schulze, E. D. and Mooney, H. A., eds. Design and Execution of Experiments on CO2 Enrichment , Ecosystems Research Report 6 (CEC). (1993): 127-145
63
Pell E. J., Schlagnhaufer C. D., Arteca R. N..
Ozone-induced oxidative stress: mechanisms of action and reaction.
Physiologia Plantarum.
(1997);
100
264-273
64 Platz G.. The onset and effectiveness of adult plant resistance (APR) in Tallon
barley. Proceedings of the 10th Australian Barley Technical Symposium, www.regional.org.au/au/abts/2001/t1/platz.htm . (2001)
65
Pleijel H., Skarby L., Wallin G., Selldén G..
Yield and grain quality of spring wheat (Triticum aestivum L. cv. Drabant) exposed to different concentrations of ozone in open-top chambers.
Environmental Pollution.
(1991);
69
151-168
66
Pleijel H., Danielsson H., Gelang J., Sild E., Selldén G..
Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.).
Agriculture, Ecosystems and Environment.
(1998);
70
61-68
67
Pleijel H., Gelang J., Sild E., Danielson H., Younis S., Karlsson P. E., Wallin G.,
Skärby L., Selldén G..
Effects of elevated carbon dioxide, ozone and water availability on spring wheat growth
and yield.
Physiologia Plantarum.
(2000);
108
61-70
68
Poorter H., Navas M. L..
Plant growth and competition at elevated CO2 : on winners, losers and functional groups.
New Phytologist.
(2003);
157
175-198
69
Poorter H., Van Berkel Y., Baxter R., Den Hertog J., Dijkstra P., Gifford R. M., Griffin K. L.,
Roumet C., Roy J., Wong S. C..
The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species.
Plant, Cell and Environment.
(1997);
20
472-482
71
Rao M. V., Koch J. R., Davis K. R..
Ozone: a tool for probing programmed cell death in plants.
Plant Molecular Biology.
(2000);
44
345-358
72
Reinert R. A., Palmer G., Barton J..
Growth and fruiting of tomato as influenced by elevated carbon dioxide and ozone.
New Phytologist.
(1997);
137
411-420
73
Reiss E., Bryngelsson T..
Pathogenesis-related proteins in barley leaves, induced by infection with Drechslera teres (Sacc.) Shoem. and by treatment with other biotic agents.
Physiological and Molecular Plant Pathology.
(1996);
49
331-341
74
Rühmann S., Leser C., Bannert M., Treutter D..
Relationship between growth, secondary metabolism and resistance of apple.
Plant Biology.
(2002);
4
137-143
75
Sage R. F., Coleman J. R..
Effects of low atmospheric CO2 on plants: more than a thing of the past.
Trends in Plant Science.
(2001);
6
18-24
76
Sandermann H..
Ozone and plant health.
Annual Review Phytopathology.
(1996);
34
347-366
77
Sandermann H..
Ozone/biotic disease interactions: molecular biomarkers as a new experimental tool.
Environmental Pollution.
(2000);
108
327-332
78
Sandermann H., Ernst D., Heller W., Langebartels C..
Ozone: an abiotic elicitor of plant defence reactions.
Trends in Plant Science.
(1998);
3
47-50
79
Schapendonk A. H. C. M., van Oijen M., Dijkstra P., Pot C. S., Jordi W. J. R. M.,
Stoopen G. M..
Effects of elevated CO2 concentration on photosynthetic acclimation and productivity of two potato cultivars
grown in open-top chambers.
Australian Journal of Plant Physiology.
(2000);
27
1119-1130
80 Schilling G.. Pflanzenernährung und Düngung. Stuttgart; Verlag Eugen Ulmer (2000)
81
Schraudner M., Ernst D., Langebartels C., Sandermann H..
Biochemical responses to ozone. III. Activation of the defense-related proteins β‐1,
3-glucanase and chitinase in tobacco leaves.
Plant Physiology.
(1992);
99
1321-1328
82
Schütz M., Fangmeier A..
Growth and yield responses of spring wheat (Triticum aestivum L. cv. Minaret) to elevated CO2 and water limitation.
Environmental Pollution.
(2001);
114
187-194
84
Sharma Y. K., León J., Raskin I., Davis K. R..
Ozone-induced responses in Arabidopsis thaliana : The role of salicylic acid in the accumulation of defense-related transcripts.
Proceedings of the National Academy of Sciences of the USA.
(1996);
93
5099-5104
85
Sherwood R. T., Vance C. P..
Resistance to fungal penetration in Gramineae.
Phytopathology.
(1980);
70
273-279
86
Sicher R. C..
Yellowing and photosynthetic decline of barley primary leaves in response to atmospheric
CO2 enrichment.
Physiologia Plantarum.
(1998);
103
193-200
87
Sild E., Younis S., Pleijel H., Selldén G..
Effect of CO2 enrichment on non-structural carbohydrates in leaves, stems and ears of spring wheat.
Physiologia Plantarum.
(1999);
107
60-67
88
Smedegaard-Petersen V..
Increased demand for respiratory energy of barley leaves reacting hypersensitively
against Erysiphe graminis, Pyrenophora teres and Pyrenophora graminea .
Phytopathologische Zeitschrift.
(1980);
99
54-62
89
Smedegaard-Petersen V., Stólen O..
Effect of energy-requiring defense reactions on yield and grain quality in a powdery
mildew-resistant barley cultivar.
Phytopathology.
(1981);
71
396-399
90
Smedegaard-Petersen V., Tollstrup K..
The limiting effect of disease resistance on yield.
Annual Review of Phytopathology.
(1985);
23
475-490
91
Stamp N..
Out of the quagmire of plant defense hypotheses.
The Quarterly Review of Biology.
(2003);
78
23-55
92
Steffenson B. J., Webster R. K..
Quantitative resistance to Pyrenophora teres f. teres in barley.
Phytopathology.
(1992);
82
407-411
93
Steffenson B. J., Webster R. K., Jackson L. F..
Reduction in yield loss using incomplete resistance to Pyrenophora teres f. sp. teres in barley.
Plant Disease.
(1991);
75
96-100
108 StMLF .Report of the Bavarian Ministry of Agriculture. Bayerische Landwirtschaft
in Zahlen. (2002)
94
Strack D., Heilemann J., Mömken M., Wray V..
Cell wall-conjugated phenolics from coniferous leaves.
Phytochemistry.
(1988);
27
351-352
95
Takahashi T..
The fate of industrial carbon dioxide.
Science.
(2004);
305
352-353
96 Taylor D. R.. Climate Change and Agriculture in the United Kingdom. London, UK;
Ministry of Agriculture, Fisheries and Food (1998)
97
Theobald J. C., Mitchell R. A. C., Parry M. A. J., Lawlor D. W..
Estimating the excess investment in ribulose-1,5-bisphosphate carboxylase/oxygenase
in leaves of spring wheat grown under elevated CO2 .
Plant Physiology.
(1998);
118
945-955
98
Tiedemann v. A., Firsching K. H..
Effects of ozone exposure and leaf age of wheat on infection processes of Septoria nodorum Berk.
Plant Pathology.
(1993);
42
287-293
99
Tiedemann v. A., Firsching K. H..
Combined whole-season effects of elevated ozone and carbon dioxide concentrations
on a simulated wheat leaf rust (Puccinia recondita f. sp. tritici) epidemic.
Journal of Plant Diseases and Protection.
(1998);
105
555-566
100
Tiedemann v. A., Firsching K. H..
Interactive effects of elevated CO2 , ozone and leaf rust infection of productivity in wheat.
Environmental Pollution.
(2000);
108
357-363
101
Tiedemann v. A., Ostländer P., Firsching K. H., Fehrmann H..
Ozone episodes in Southern Lower Saxony (FRG) and their impact on the susceptibility
of cereals to fungal pathogens.
Environmental Pollution.
(1990);
67
43-59
102
Turunen M., Heller W., Stich S., Sandermann H., Sutinen M. L., Norokorpi Y..
The effects of UV exclusion on the soluble phenolics of young Scots pine seedlings
in the subarctic.
Environmental Pollution.
(1999);
106
219-228
103
Vandermeiren K., Black C., Lawson T., Casanova M. A., Ojanpera K..
Photosynthetic and stomatal responses of potatoes grown under elevated CO2 and/or O3 - results from the European CHIP-programme.
European Journal of Agronomy.
(2002);
17
337-352
104
Volin J. C., Reich P. B., Givnish T. J..
Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth:
species respond similarly regardless of photosynthetic pathway or plant functional
group.
New Phytologist.
(1998);
138
315-325
105
Waller F., Achatz B., Baltruschat H., Fodor J., Hückelhoven R., Neumann C., von Wettstein D.,
Franken P., Kogel K.-H..
The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield.
Proceedings of the National Academy of Sciences of the USA.
(2005);
102
13386-13391
106
Wirth S. J., Wolf G. A..
Dye-labelled substrates for the assay and detection of chitinase and lysozyme activity.
Journal for Microbiological Methods.
(1990);
12
197-205
107
Yalpani N., Enyedi A. J., Leon J., Raskin I..
UV light and ozone stimulate accumulation of salicylic acid, pathogenesis-related
proteins and virus resistance in tobacco.
Planta.
(1994);
193
372-376
I. Heiser
Institute of Phytopathology Life Science Center Weihenstephan Technical University of Munich
Am Hochanger 2
85350 Freising
Germany
Email: heiser@lrz.tum.de
Guest Editor: R. Matyssek