Plant Biol (Stuttg) 2005; 7(6): 694-705
DOI: 10.1055/s-2005-873002
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Growth Parameters and Resistance against Drechslera teres of Spring Barley (Hordeum vulgare L. cv. Scarlett) Grown at Elevated Ozone and Carbon Dioxide Concentrations

M. Plessl1 , W. Heller2 , H.-D. Payer3 , E. F. Elstner1 , J. Habermeyer1 , I. Heiser1
  • 1Institute of Phytopathology, Life Science Center Weihenstephan, Technical University of Munich, Am Hochanger 2, 85350 Freising, Germany
  • 2GSF - National Research Center for Environment and Health, Institute of Biochemical Plant Pathology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
  • 3GSF - National Research Center for Environment and Health, Institute of Soil Ecology, Department of Environmental Engineering, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
Further Information

Publication History

Received: July 1, 2005

Accepted: October 25, 2005

Publication Date:
02 January 2006 (online)

Abstract

Spring barley (Hordeum vulgare L. cv. Scarlett) was grown at two CO2 levels (400 vs. 700 ppm) combined with two ozone regimes (ambient vs. double ambient) in climate chambers for four weeks, beginning at seedling emergence. Elevated CO2 concentration significantly increased aboveground biomass, root biomass, and tiller number, whereas double ambient ozone significantly decreased these parameters. These ozone-induced reductions in growth parameters were strongly overridden by 700 ppm CO2. The elevated CO2 level increased C : N ratio of the leaf tissue and leaf starch content but decreased leaf protein levels. Exposure to double ambient ozone did not affect protein content and C : N ratio but dramatically increased leaf starch levels at 700 ppm CO2. Resistance against Drechslera teres (Sacc.) Shoemaker was increased in leaves grown at double ambient ozone but was less obvious at 700 ppm than at 400 ppm CO2. Constitutive activities of β‐1,3-glucanase and chitinase were significantly higher in leaves grown at double ambient ozone compared to ambient ozone levels. The sum of methanol-soluble and alkali-released cell wall-bound aromatic metabolites (i.e., C-glycosylflavones and several structurally unidentified metabolites) and lignin contents did not show any treatment-dependent differences.

References

  • 1 Able A. J.. Role of reactive oxygen species in the response of barley to necrotrophic pathogens.  Protoplasma. (2003);  221 137-143
  • 2 Adaros G., Weigel H. J., Jäger H. J.. Growth and yield of spring rape and spring barley as affected by chronic ozone stress.  Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz. (1991);  98 513-525
  • 3 Allen L. H.. Plant response to rising carbon dioxide and potential interactions with air pollutants.  Journal of Environmental Quality. (1990);  19 15-34
  • 4 Arabi M. I. E., Al-Safadi B., Charbaji T.. Pathogenic variation among isolates of Pyrenophora teres, the causal agent of barley net blotch.  Journal of Phytopathology. (2003);  151 376-382
  • 5 Beutler H. O.. Starch. Bergmeyer, H. U., Bergmeyer, J., and Graßl, M., eds. Methods of Enzymatic Analysis, Vol. VI. Metabolites 1: Carbohydrates. Weinheim; Verlag Chemie (1984): 2-10
  • 6 Black V. J., Black C. R., Roberts J. A., Stewart C. A.. Impact of ozone on the reproductive development of plants.  New Phytologist. (2000);  147 421-447
  • 7 Blatter R. H. E., Brown J. K. M., Wolfe M. S.. Genetic control of the resistance of Erysiphe graminis f. sp. hordei to five triazole fungicides.  Plant Pathology. (1998);  47 570-579
  • 8 Bowling S. A., Guo A., Cao H., Gordon A. S., Klessig D. F., Dong X.. A mutation of Arabidopsis that leads to constitutive expression of systemic acquired resistance.  Plant Cell. (1994);  6 1845-1857
  • 9 Bradford M. M.. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of a protein-dye binding.  Analytical Biochemistry. (1976);  72 248-254
  • 10 Bruce R. J., West C. A.. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean.  Plant Physiology. (1989);  91 889-897
  • 11 BWB .Baden-Württembergischer Brauerbund e. V. (annual report). (2001)
  • 12 Cardoso-Vilhena J., Barnes J.. Does nitrogen supply affect the response of wheat (Triticum aestivum cv. Hanno) to the combination of elevated CO2 and O3?.  Journal of Experimental Botany. (2001);  52 1901-1911
  • 13 Chang T. T., Konzak C. F., Zadoks J. C.. A decimal code for the growth stages of cereals.  Weed Research. (1974);  14 415-421
  • 14 Cooley D. R., Manning W. J.. The impact of ozone on assimilate partitioning in plants: a review.  Environmental Pollution. (1987);  47 95-113
  • 15 Craigon J., Fangmeier A., Jones M., Donnelly A., Bindi M., De Temmermann L., Persson K., Ojanpera K.. Growth and marketable-yield responses of potato to increased CO2 and ozone.  European Journal of Agronomy. (2002);  17 273-289
  • 16 Deimel H., Hoffmann G. M.. Detrimental effects of net blotch disease to barley plants caused by Drechslera teres (Sacc.) Shoemaker.  Journal of Plant Diseases and Protection. (1991);  98 137-161
  • 17 Dohmen G. P.. Secondary effects of air pollution: ozone decreases brown rust disease potential in wheat.  Environmental Pollution. (1987);  43 189-194
  • 18 Donnelly A., Jones M. B., Burke J. I., Schnieders B.. Does elevated CO2 protect grain yield of wheat from the effects of ozone stress?.  Zeitschrift für Naturforschung. (1999);  54c 802-811
  • 19 Donnelly A., Jones M. B., Burke J. I., Schnieders B.. Elevated CO2 provides protection from O3 induced photosynthetic damage and chlorophyll loss in flag leaves of spring wheat (Triticum aestivum L. cv. Minaret).  Agriculture, Ecosystems and Environment. (2000);  80 159-168
  • 20 Donnelly A., Craigon J., Black C. R., Colls J. J., Landon G.. Does elevated CO2 ameliorate the impact of O3 on chlorophyll content and photosynthesis in potato (Solanum tuberosum)?.  Physiologia Plantarum. (2001);  111 501-511
  • 21 Drake B. M., Gonzalez-Meler M., Long S. P.. More efficient plants: a consequence of rising atmospheric CO2.  Annual Review of Plant Physiology and Plant Molecular Biology. (1997);  48 607-637
  • 22 Eckey-Kaltenbach H., Großkopf E., Sandermann H., Ernst D.. Induction of pathogen defence genes in parsley (Petroselinum crispum L.) plants by ozone.  Proceedings of the Royal Society of Edinburgh. (1994);  102B 63-74
  • 23 Ernst D., Schraudner M., Langebartels C., Sandermann H.. Ozone-induced changes of mRNA levels of β‐1, 3-glucanase, chitinase and pathogenesis-related protein 1b in tobacco plants.  Plant Molecular Biology. (1992);  20 673-682
  • 24 Estiarte M., Penuelas J., Kimball B. A., Hendrix D. L., Pinter D. L., Wall G. W., LaMorte R. L., Hunsaker D. J.. Free-air CO2 enrichment of wheat: leaf flavonoid concentration throughout the growth cycle.  Physiologia Plantarum. (1999);  105 423-433
  • 25 Fangmeier A., Brockerhoff U., Gruters U., Jäger H. J.. Growth and yield responses of spring wheat (Triticum aestivum L. cv. Turbo) grown in open-top chambers to ozone and water stress.  Environmental Pollution. (1994);  91 317-325
  • 26 Fangmeier A., Chrost B., Högy P., Krupinska K.. CO2 enrichment enhances flag leaf senescence in barley due to greater grain nitrogen sink capacity.  Environmental and Experimental Botany. (2000);  44 151-164
  • 27 Grantz D. A., Farrar J. F.. Acute exposure to ozone inhibits rapid carbon translocation from source leaves of Pima cotton.  Journal of Experimental Botany. (1999);  50 1253-1262
  • 28 Habermeyer J., Gerhard M.. Pilzkrankheiten und Schadsymptome im Getreidebau. Limburgerhof, Germany; BASF AG (1997)
  • 29 Heagle A. S., Key L. W.. Effect of ozone on the wheat stem rust fungus.  Phytopathology. (1973);  63 397-400
  • 30 Heagle A. S., Spencer S., Letchworth M. B.. Yield response of winter wheat to chronic doses of ozone.  Canadian Journal of Botany. (1979);  57 1999-2005
  • 31 Heagle A. S., Miller J. E., Pursley W. A.. Influence of ozone stress on soybean response to carbon dioxide enrichment. III. Yield and seed quality.  Crop Science. (1998);  38 128-134
  • 32 Heagle A. S., Miller J. E., Booker F. L., Pursley W. A.. Ozone stress, carbon dioxide enrichment and nitrogen fertility interactions in cotton.  Crop Science. (1999);  39 731-741
  • 33 Heagle A. S., Miller J. E., Pursley W. A.. Growth and yield responses of winter wheat to mixtures of ozone and carbon dioxide.  Crop Science. (2000);  40 1656-1664
  • 34 Heath R. L., Taylor G. E.. Physiological processes affecting plant responses to ozone exposure. Sandermann, H., Wellburn, A. R., and Heath, R. L., eds. Forest Decline and Ozone: A Comparison of Controlled Chamber and Field Experiments. New York; Springer-Verlag (1997): 317-368
  • 35 Heil M., Baldwin I. T.. Fitness costs of induced resistance: emerging experimental support for a slippery concept.  Trends in Plant Science. (2002);  7 61-67
  • 36 Heil M., Hilpert A., Kaiser W., Linsenmair K. E.. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs?.  Journal of Ecology. (2000);  88 645-654
  • 37 Herms D. A., Mattson W. J.. The dilemma of plants: to grow or to defend.  The Quarterly Review of Biology. (1992);  67 283-335
  • 38 Hibberd J. M., Whitbread R., Farrar J. F.. Effect of elevated concentrations of CO2 on infection of barley by Erysiphe graminis.  Physiological and Molecular Plant Pathology. (1996);  48 37-53
  • 39 IPCC .Climate Change 2001. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., and Xiaosu, D., eds. The Scientific Basis , Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK; Cambridge University Press (2001)
  • 40 Jonsson R., Bryngelsson T., Jalli M., Gustafsson M.. Effect of growth stage on resistance to Drechslera teres f. teres in barley.  Journal of Phytopathology. (1998);  146 261-265
  • 41 Kangasjärvi J., Talvinen J., Utriainen M., Karjalainen R.. Plant defence systems induced by ozone.  Plant, Cell and Environment. (1994);  17 783-794
  • 42 Keen N. T., Yoshikawa M.. β‐1, 3-Glucanase from soybean releases elicitor-active carbohydrates from fungus cell walls.  Plant Physiology. (1983);  71 460-465
  • 43 Kimball B. A.. Carbon dioxide and agricultural yield: assemblage and analysis of 430 prior observations.  Agron Journal. (1983);  75 779-788
  • 44 Kogel K. H., Beckhove U., Dreschers J., Münch S., Rommé Y.. Acquired resistance in barley.  Plant Physiology. (1994);  106 1269-1277
  • 45 Krupa S., McGrath M. T., Andersen C. P., Booker F. L., Burkey K. O., Chappelka A. H., Chevone B. I., Pell E. J., Zilinskas B. A.. Ambient ozone and plant health.  Plant Disease. (2000);  85 4-12
  • 46 Lever M.. A new reaction for colorimetric determination of carbohydrates.  Analytical Biochemistry. (1972);  47 273-279
  • 47 Makino A., Harada M., Sato T., Nakano H., Mae T.. Growth and N allocation in rice plants under CO2 enrichment.  Plant Physiology. (1997);  115 199-203
  • 48 Makino A., Mae T.. Photosynthesis and plant growth at elevated levels of CO2.  Plant and Cell Physiology. (1999);  40 999-1006
  • 49 Manning W., Tiedemann A.. Climate change: potential effects of increased atmospheric carbon dioxide, ozone and ultraviolet-B radiation on plant disease.  Environmental Pollution. (1995);  88 219-245
  • 50 Marenco A., Gouget H., Nedelec P., Pages J. P., Karcher F.. Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series - consequences: positive radiative forcing.  Journal of Geophysical Research. (1994);  99 16617-16632
  • 51 Martín-Olmedo P., Rees R. M., Grace J.. The influence of plants grown under elevated CO2 and N fertilization on soil nitrogen dynamics.  Global Change Biology. (2002);  8 643-657
  • 52 Matyssek R., Schnyder H., Elstner E. F., Munch J. C., Pretzsch H., Sandermann H.. Growth and parasite defence in plants: the balance between resource sequestration and retention: in lieu of a guest editorial.  Plant Biology. (2002);  4 133-136
  • 53 McCrady J. K., Andersen C. P.. The effect of ozone on below-ground carbon allocation in wheat.  Environmental Pollution. (2000);  107 465-472
  • 54 McKee I. F., Mulholland B. J., Craigon J., Black C. R., Long S. P.. Elevated concentrations of atmospheric CO2 protect against and compensate for O3 damage to photosynthetic tissues of field-grown wheat.  New Phytologist. (2000);  146 427-435
  • 55 Meyer U., Köllner B., Willenbrink J., Krause G. H. M.. Effects of different ozone exposure regimes on photosynthesis, assimilates and thousand grain weight in spring wheat.  Agriculture, Ecosystems and Environment. (2000);  78 49-55
  • 56 Miller J. E., Heagle A. S., Pursley W. A.. Influence of ozone stress on soybean response to carbon dioxide enrichment. II. Biomass and development.  Crop Science. (1998);  38 122-128
  • 57 Mulholland B. J., Craigon J., Black C. R., Colls J. J., Atherton J., Landon G.. Effects of elevated carbon dioxide and ozone on the growth and yield of spring wheat (Triticum aestivum L.).  Journal of Experimental Botany. (1997 a);  48 113-122
  • 58 Mulholland B. J., Craigon J., Black C. R., Colls J. J., Atherton J., Landon G.. Impact of elevated atmospheric CO2 and O3 on gas exchange and chlorophyll content of spring wheat (Triticum aestivum L.).  Journal of Experimental Botany. (1997 b);  48 1853-1863
  • 59 Mulholland B. J., Craigon J., Black C. R., Colls J. J., Atherton J., Landon G.. Growth, light interception and yield responses of spring wheat (Triticum aestivum L.) grown under elevated CO2 and O3 in open top chambers.  Global Change Biology. (1998);  4 121-130
  • 60 Nakano H., Makino A., Mae T.. The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves.  Plant Physiology. (1997);  115 191-198
  • 61 Ollerenshaw J. H., Lyons T., Barnes J. D.. Impacts of ozone on the growth and yield of field-grown winter oilseed rape.  Environmental Pollution. (1999);  104 53-59
  • 62 Payer H. D., Blodow P., Köfferlein M., Lippert M., Schmolke W., Seckmeyer G., Seidlitz H., Strube D., Thiel S.. Controlled environment chambers for experimental studies on plant responses to CO2 and interactions with pollutants. Schulze, E. D. and Mooney, H. A., eds. Design and Execution of Experiments on CO2 Enrichment , Ecosystems Research Report 6 (CEC). (1993): 127-145
  • 63 Pell E. J., Schlagnhaufer C. D., Arteca R. N.. Ozone-induced oxidative stress: mechanisms of action and reaction.  Physiologia Plantarum. (1997);  100 264-273
  • 64 Platz G.. The onset and effectiveness of adult plant resistance (APR) in Tallon barley. Proceedings of the 10th Australian Barley Technical Symposium, www.regional.org.au/au/abts/2001/t1/platz.htm. (2001)
  • 65 Pleijel H., Skarby L., Wallin G., Selldén G.. Yield and grain quality of spring wheat (Triticum aestivum L. cv. Drabant) exposed to different concentrations of ozone in open-top chambers.  Environmental Pollution. (1991);  69 151-168
  • 66 Pleijel H., Danielsson H., Gelang J., Sild E., Selldén G.. Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.).  Agriculture, Ecosystems and Environment. (1998);  70 61-68
  • 67 Pleijel H., Gelang J., Sild E., Danielson H., Younis S., Karlsson P. E., Wallin G., Skärby L., Selldén G.. Effects of elevated carbon dioxide, ozone and water availability on spring wheat growth and yield.  Physiologia Plantarum. (2000);  108 61-70
  • 68 Poorter H., Navas M. L.. Plant growth and competition at elevated CO2: on winners, losers and functional groups.  New Phytologist. (2003);  157 175-198
  • 69 Poorter H., Van Berkel Y., Baxter R., Den Hertog J., Dijkstra P., Gifford R. M., Griffin K. L., Roumet C., Roy J., Wong S. C.. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species.  Plant, Cell and Environment. (1997);  20 472-482
  • 71 Rao M. V., Koch J. R., Davis K. R.. Ozone: a tool for probing programmed cell death in plants.  Plant Molecular Biology. (2000);  44 345-358
  • 72 Reinert R. A., Palmer G., Barton J.. Growth and fruiting of tomato as influenced by elevated carbon dioxide and ozone.  New Phytologist. (1997);  137 411-420
  • 73 Reiss E., Bryngelsson T.. Pathogenesis-related proteins in barley leaves, induced by infection with Drechslera teres (Sacc.) Shoem. and by treatment with other biotic agents.  Physiological and Molecular Plant Pathology. (1996);  49 331-341
  • 74 Rühmann S., Leser C., Bannert M., Treutter D.. Relationship between growth, secondary metabolism and resistance of apple.  Plant Biology. (2002);  4 137-143
  • 75 Sage R. F., Coleman J. R.. Effects of low atmospheric CO2 on plants: more than a thing of the past.  Trends in Plant Science. (2001);  6 18-24
  • 76 Sandermann H.. Ozone and plant health.  Annual Review Phytopathology. (1996);  34 347-366
  • 77 Sandermann H.. Ozone/biotic disease interactions: molecular biomarkers as a new experimental tool.  Environmental Pollution. (2000);  108 327-332
  • 78 Sandermann H., Ernst D., Heller W., Langebartels C.. Ozone: an abiotic elicitor of plant defence reactions.  Trends in Plant Science. (1998);  3 47-50
  • 79 Schapendonk A. H. C. M., van Oijen M., Dijkstra P., Pot C. S., Jordi W. J. R. M., Stoopen G. M.. Effects of elevated CO2 concentration on photosynthetic acclimation and productivity of two potato cultivars grown in open-top chambers.  Australian Journal of Plant Physiology. (2000);  27 1119-1130
  • 80 Schilling G.. Pflanzenernährung und Düngung. Stuttgart; Verlag Eugen Ulmer (2000)
  • 81 Schraudner M., Ernst D., Langebartels C., Sandermann H.. Biochemical responses to ozone. III. Activation of the defense-related proteins β‐1, 3-glucanase and chitinase in tobacco leaves.  Plant Physiology. (1992);  99 1321-1328
  • 82 Schütz M., Fangmeier A.. Growth and yield responses of spring wheat (Triticum aestivum L. cv. Minaret) to elevated CO2 and water limitation.  Environmental Pollution. (2001);  114 187-194
  • 84 Sharma Y. K., León J., Raskin I., Davis K. R.. Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts.  Proceedings of the National Academy of Sciences of the USA. (1996);  93 5099-5104
  • 85 Sherwood R. T., Vance C. P.. Resistance to fungal penetration in Gramineae.  Phytopathology. (1980);  70 273-279
  • 86 Sicher R. C.. Yellowing and photosynthetic decline of barley primary leaves in response to atmospheric CO2 enrichment.  Physiologia Plantarum. (1998);  103 193-200
  • 87 Sild E., Younis S., Pleijel H., Selldén G.. Effect of CO2 enrichment on non-structural carbohydrates in leaves, stems and ears of spring wheat.  Physiologia Plantarum. (1999);  107 60-67
  • 88 Smedegaard-Petersen V.. Increased demand for respiratory energy of barley leaves reacting hypersensitively against Erysiphe graminis, Pyrenophora teres and Pyrenophora graminea.  Phytopathologische Zeitschrift. (1980);  99 54-62
  • 89 Smedegaard-Petersen V., Stólen O.. Effect of energy-requiring defense reactions on yield and grain quality in a powdery mildew-resistant barley cultivar.  Phytopathology. (1981);  71 396-399
  • 90 Smedegaard-Petersen V., Tollstrup K.. The limiting effect of disease resistance on yield.  Annual Review of Phytopathology. (1985);  23 475-490
  • 91 Stamp N.. Out of the quagmire of plant defense hypotheses.  The Quarterly Review of Biology. (2003);  78 23-55
  • 92 Steffenson B. J., Webster R. K.. Quantitative resistance to Pyrenophora teres f. teres in barley.  Phytopathology. (1992);  82 407-411
  • 93 Steffenson B. J., Webster R. K., Jackson L. F.. Reduction in yield loss using incomplete resistance to Pyrenophora teres f. sp. teres in barley.  Plant Disease. (1991);  75 96-100
  • 108 StMLF .Report of the Bavarian Ministry of Agriculture. Bayerische Landwirtschaft in Zahlen. (2002)
  • 94 Strack D., Heilemann J., Mömken M., Wray V.. Cell wall-conjugated phenolics from coniferous leaves.  Phytochemistry. (1988);  27 351-352
  • 95 Takahashi T.. The fate of industrial carbon dioxide.  Science. (2004);  305 352-353
  • 96 Taylor D. R.. Climate Change and Agriculture in the United Kingdom. London, UK; Ministry of Agriculture, Fisheries and Food (1998)
  • 97 Theobald J. C., Mitchell R. A. C., Parry M. A. J., Lawlor D. W.. Estimating the excess investment in ribulose-1,5-bisphosphate carboxylase/oxygenase in leaves of spring wheat grown under elevated CO2.  Plant Physiology. (1998);  118 945-955
  • 98 Tiedemann v. A., Firsching K. H.. Effects of ozone exposure and leaf age of wheat on infection processes of Septoria nodorum Berk.  Plant Pathology. (1993);  42 287-293
  • 99 Tiedemann v. A., Firsching K. H.. Combined whole-season effects of elevated ozone and carbon dioxide concentrations on a simulated wheat leaf rust (Puccinia recondita f. sp. tritici) epidemic.  Journal of Plant Diseases and Protection. (1998);  105 555-566
  • 100 Tiedemann v. A., Firsching K. H.. Interactive effects of elevated CO2, ozone and leaf rust infection of productivity in wheat.  Environmental Pollution. (2000);  108 357-363
  • 101 Tiedemann v. A., Ostländer P., Firsching K. H., Fehrmann H.. Ozone episodes in Southern Lower Saxony (FRG) and their impact on the susceptibility of cereals to fungal pathogens.  Environmental Pollution. (1990);  67 43-59
  • 102 Turunen M., Heller W., Stich S., Sandermann H., Sutinen M. L., Norokorpi Y.. The effects of UV exclusion on the soluble phenolics of young Scots pine seedlings in the subarctic.  Environmental Pollution. (1999);  106 219-228
  • 103 Vandermeiren K., Black C., Lawson T., Casanova M. A., Ojanpera K.. Photosynthetic and stomatal responses of potatoes grown under elevated CO2 and/or O3 - results from the European CHIP-programme.  European Journal of Agronomy. (2002);  17 337-352
  • 104 Volin J. C., Reich P. B., Givnish T. J.. Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group.  New Phytologist. (1998);  138 315-325
  • 105 Waller F., Achatz B., Baltruschat H., Fodor J., Hückelhoven R., Neumann C., von Wettstein D., Franken P., Kogel K.-H.. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield.  Proceedings of the National Academy of Sciences of the USA. (2005);  102 13386-13391
  • 106 Wirth S. J., Wolf G. A.. Dye-labelled substrates for the assay and detection of chitinase and lysozyme activity.  Journal for Microbiological Methods. (1990);  12 197-205
  • 107 Yalpani N., Enyedi A. J., Leon J., Raskin I.. UV light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco.  Planta. (1994);  193 372-376

I. Heiser

Institute of Phytopathology
Life Science Center Weihenstephan
Technical University of Munich

Am Hochanger 2

85350 Freising

Germany

Email: heiser@lrz.tum.de

Guest Editor: R. Matyssek

    >