Plant Biol (Stuttg) 2006; 8(1): 18-30
DOI: 10.1055/s-2005-873044
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Deletion of Core Components of the Plastid Protein Import Machinery Causes Differential Arrest of Embryo Development in Arabidopsis thaliana

B. Hust1 , M. Gutensohn1
  • 1Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
Further Information

Publication History

Received: July 23, 2005

Accepted: November 9, 2005

Publication Date:
25 January 2006 (online)

Abstract

Among the genes that have recently been pinpointed to be essential for plant embryo development a large number encodes plastid proteins suggesting that embryogenesis is linked to plastid localized processes. However, nuclear encoded plastid proteins are synthesized as precursors in the cytosol and subsequently have to be transported across the plastid envelopes by a complex import machinery. We supposed that deletion of components of this machinery should allow a more general assessment of the role of plastids in embryogenesis since it will not only affect single proteins but instead inhibit the accumulation of most plastid proteins. Here we have characterized three Arabidopsis thaliana mutants lacking core components of the Toc complex, the protein translocase in the outer plastid envelope membrane, which indeed show embryo lethal phenotypes. Remarkably, embryo development in the atToc75-III mutant, lacking the pore forming component of the translocase, was arrested extremely early at the two-cell stage. In contrast, despite the complete or almost complete lack of the import receptors Toc34 and Toc159, embryo development in the atToc33/34 and atToc132/159 mutants proceeded slowly and was arrested later at the transition to the globular and the heart stage, respectively. These data demonstrate a strict dependence of cell division and embryo development on functional plastids as well as specific functions of plastids at different stages of embryogenesis. In addition, our analysis suggest that not all components of the translocase are equally essential for plastid protein import in vivo.

References

  • 1 Ahlert D., Ruf S., Bock R.. Plastid protein synthesis is required for plant development in tobacco.  Proceedings of the National Academy of Sciences of the USA. (2003);  100 15730-15735
  • 2 Albert S., Despres B., Guilleminot J., Bechtold N., Pelletier G., Delseny M., Devic M.. The EMB506 gene encodes a novel ankyrin repeat containing protein that is essential for the normal development of Arabidopsis embryos.  The Plant Journal. (1999);  17 169-179
  • 3 Alonso J. M., Stepanova A. N., Leisse T. J., Kim C. J., Chen H., Shinn P., Stevenson D. K., Zimmerman J., Barajas P., Cheuk  et al. R.. Genome-wide insertional mutagenesis of Arabidopsis thaliana.  Science. (2003);  301 653-657
  • 4 Apuya N. R., Yadegari R., Fischer R. L., Harada J. J., Zimmermann L., Goldberg R. B.. The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60α gene.  Plant Physiology. (2001);  126 717-730
  • 71 Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidmann J. G., Smith J. A., Struhl K.. Current Protocols in Molecular Biology. New York; Wiley (1994)
  • 5 Apuya N. R., Yadegari R., Fischer R. L., Harada J. H., Goldberg R. B.. RASPBERRY3 gene encodes a novel protein important for embryo development.  Plant Physiology. (2002);  129 691-705
  • 6 Baker K.P., Schaniel A., Vestweber D., Schatz G.. A yeast mitochondrial outer membrane protein essential for protein import and cell viability.  Nature. (1990);  348 605-609
  • 7 Baldwin A., Wardle A., Patel R., Dudley P., Park S. K., Twell D., Inoue K., Jarvis P.. A molecular-genetic study of the Arabidopsis Toc75 fene family.  Plant Physiology. (2005);  138 715-733
  • 8 Bauer J., Chen K., Hiltbrunner A., Wehrli E., Eugster M., Schnell D., Kessler F.. The major protein import receptor of plastids is essential for chloroplast biogenesis.  Nature. (2000);  403 203-207
  • 9 Becker T., Jelic M., Vojta A., Radunz A., Soll J., Schleiff E.. Preprotein recognition by the Toc complex.  EMBO Journal. (2004);  23 520-530
  • 10 Bölter B., Soll J., Schulz A., Hinnah S., Wagner R.. Origin of a chloroplast protein importer.  Proceedings of the National Academy of Sciences of the USA. (1998);  95 15831-15836
  • 11 Chen K., Chen X., Schnell D. J.. Initial binding of preproteins involving the Toc159 receptor can be bypassed during protein import into chloroplasts.  Plant Physiology. (2000);  122 813-822
  • 12 Chou M. L., Fitzpatrick L. M., Tu S. L., Budziszewski G., Potter-Lewis S., Akita M., Levin J. Z., Keegstra K., Li H.. Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon.  EMBO Journal. (2003);  22 2970-2980
  • 13 Constan D., Patel R., Keegstra K., Jarvis P.. An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis.  The Plant Journal. (2004);  38 93-106
  • 14 De Boer A. D., Weisbeek P. J.. Chloroplast protein topogenesis: import, sorting and assembly.  Biochimica et Biophysica Acta. (1991);  1071 221-253
  • 15 Despres B., Delseny M., Devic M.. Partial complementation of embryo defective mutations: a general strategy to elucidate gene function.  The Plant Journal. (2001);  27 149-159
  • 16 Eckart K., Eichacker L., Sohrt K., Schleiff E., Heins L., Soll J.. A Toc75-like protein import channel is abundant in chloroplasts.  EMBO Reports. (2002);  3 557-562
  • 17 Goldberg R. B., de Paiva G., Yadegari R.. Plant embryogenesis: zygote to seed.  Science. (1994);  266 605-614
  • 18 Gutensohn M., Pahnke S., Kolukisaoglu Ü., Schulz B., Schierhorn A., Voigt A., Hust B., Rollwitz I., Stöckel J., Geimer S., Albrecht V., Flügge U. I., Klösgen R. B.. Characterization of a T‐DNA insertion mutant for the protein import receptor atToc33 from chloroplasts.  Molecular Genetics and Genomics. (2004);  272 379-396
  • 19 Gutensohn M., Schulz B., Nicolay P., Flügge U. I.. Functional analysis of the two Arabidopsis homologues of Toc34, a component of the chloroplast protein import apparatus.  The Plant Journal. (2000);  23 771-783
  • 20 Heins L., Collinson I., Soll J.. The protein translocation apparatus of chloroplast envelopes.  Trends in Plant Science. (1998);  3 56-61
  • 21 Hiltbrunner A., Bauer J., Alvarez-Huerta M., Kessler F.. Protein translocon at the Arabidopsis outer chloroplast membrane.  Biochemistry and Cell Biology. (2001);  79 629-635
  • 22 Hiltbrunner A., Grünig K., Alvarez-Huerta M., Infanger S., Bauer J., Kessler F.. AtToc90, a new GTP-binding component of the Arabidopsis chloroplast protein import machinery.  Plant Molecular Biology. (2004);  54 427-440
  • 23 Hinnah S. C., Hill K., Wagner R., Schlicher T., Soll J.. Reconstitution of a chloroplast protein import channel.  EMBO Journal. (1997);  16 7351-7360
  • 24 Hinnah S. C., Wagner R., Sveshnikova N., Harrer R., Soll J.. The chloroplast protein import channel Toc75: pore properties and interaction with transit peptides.  Biophysical Journal. (2002);  83 899-911
  • 25 Hirsch S., Muckel E., Heemeyer F., von Heijne G., Soll J.. A receptor component of the chloroplast protein translocation machinery.  Science. (1994);  266 1989-1992
  • 26 Hönlinger A., Kübrich M., Moczko M., Gärtner F., Mallet L., Bussereau F., Eckerskorn C., Lottspeich F., Dietmeier K., Jacquet M., Pfanner N.. The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins.  Molecular and Cellular Biology. (1995);  15 3382-3389
  • 27 Hörmann F., Küchler M., Sveshnikov D., Oppermann U., Li Y., Soll J.. Tic32, an essential component in chloroplast biogenesis.  Journal of Biological Chemistry. (2004);  279 34756-34762
  • 28 Inaba T., Alvarez-Huerta M., Li M., Bauer J., Ewers C., Kessler F., Schnell D. J.. Arabidopsis Tic110 is essential for the assembly and function of the protein import machinery of plastids.  Plant Cell. (2005);  17 1482-1496
  • 29 Inoue K., Keegstra K.. A polyglycine stretch is necessary for proper targeting of the protein translocation channel precursor to the outer envelope membrane of chloroplasts.  The Plant Journal. (2003);  34 661-669
  • 30 Inoue K., Potter D.. The chloroplastic protein translocation channel Toc75 and its paralog OEP80 represent two distinct protein families and are targeted to the chloroplastic outer envelope by different mechanisms.  The Plant Journal. (2004);  39 354-365
  • 31 Ivanova Y., Smith M. D., Chen K., Schnell D. J.. Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids.  Molecular Biology of the Cell. (2004);  15 3379-3392
  • 32 Jackson-Constan D., Keegstra K.. Arabidopsis genes encoding components of the chloroplastic protein import apparatus.  Plant Physiology. (2001);  125 1567-1576
  • 33 Jarvis P., Chen L. J., Li H., Peto C. A., Fankhauser C., Chory J.. An Arabidopsis mutant defective in the plastid general protein import apparatus.  Science. (1998);  282 100-103
  • 34 Jelic M., Soll J., Schleiff E.. Two Toc34 homologues with different properties.  Biochemistry. (2003);  42 5906-5916
  • 35 Jürgens G., Mayer U., Torres Ruiz R. A., Berleth T., Misera S.. Genetic analysis of pattern formation in the Arabidopsis embryo.  Development. (1991);  1 27-38
  • 36 Kessler F., Blobel G., Patel H. A., Schnell D. J.. Identification of two GTP-binding proteins in the chloroplast protein import machinery.  Science. (1994);  266 1035-1039
  • 37 Kouranov A., Schnell D. J.. Analysis of the interactions of preproteins with the import machinery over the course of protein import into chloroplasts.  Journal of Cell Biology. (1997);  139 1677-1685
  • 38 Kovacheva S., Bedard J., Patel R., Dudley P., Twell D., Rios G., Koncz C., Jarvis P.. In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import.  The Plant Journal. (2005);  41 412-428
  • 39 Kubis S., Baldwin A., Patel R., Razzaq A., Dupree P., Lilley K., Kurth J., Leister D., Jarvis P.. The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins.  Plant Cell. (2003);  15 1859-1871
  • 40 Kubis S., Patel R., Combe J., Bedard J., Kovacheva S., Lilley K., Biehl A., Leister D., Rios G., Koncz C., Jarvis P.. Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors.  Plant Cell. (2004);  16 2059-2077
  • 41 Li H., Chen L. J.. A novel chloroplastic outer membrane-targeting signal that functions at both termini of passenger polypeptides.  Journal of Biological Chemistry. (1997);  272 10968-10974
  • 42 Lithgow T., Junne T., Suda K., Gratzer S., Schatz G.. The mitochondrial outer membrane protein Mas22 p is essential for protein import and viability of yeast.  Proceedings of the National Academy of Sciences of the USA. (1994);  91 11973-11977
  • 43 Mansfield S. G., Briarty L. G.. Early embryogenesis in Arabidopsis thaliana. II. The developing embryo.  Canadian Journal of Botany. (1991);  69 461-476
  • 44 Mayer U., Torres Ruiz R. A., Berleth T., Misera S., Jürgens G.. Mutations affecting body organization in the Arabidopsis embryo.  Nature. (1991);  353 402-407
  • 45 McElver J., Tzafrir I., Aux G., Rogers R., Ashby C., Smith K., Thomas C., Schetter A., Zhou Q., Cushmann M. A., Tossberg J., Nickle T., Levin J. Z., Law M., Meinke D., Patton D.. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana.  Genetics. (2001);  159 1751-1763
  • 46 Moczko M., Ehmann B., Gärtner F., Hönlinger A., Schäfer E., Pfanner N.. Deletion of the receptor MOM19 strongly impairs import of cleavable preproteins into Saccharomyces cerevisiae mitochondria.  Journal of Biological Chemistry. (1994);  269 9045-9051
  • 47 Perry S. E., Keegstra K.. Envelope membrane proteins that interact with chloroplastic precursor proteins.  Plant Cell. (1994);  6 93-105
  • 48 Pfanner N., Craig E. A., Hönlinger A.. Mitochondrial preprotein translocase.  Annual Review of Cell and Developmental Biology. (1997);  13 25-51
  • 49 Ramage L., Junne T., Hahne K., Lithgow T., Schatz G.. Functional cooperation of mitochondrial protein import receptors in yeast.  EMBO Journal. (1993);  12 4115-4123
  • 50 Raynaud C., Perennes C., Reuzeau C., Catrice O., Brown S., Bergounioux C.. Cell and plastid division are coordinated through the prereplication factor AtCDT1.  Proceedings of the National Academy of Sciences of the USA. (2005);  102 8216-8221
  • 51 Reumann S., Davila-Aponte J., Keegstra K.. The evolutionary origin of the protein-translocating channel of chloroplastic envelope membranes: identification of a cyanobacterial homolog.  Proceedings of the National Academy of Sciences of the USA. (1999);  96 784-789
  • 52 Rosso M. G., Li Y., Strizhov N., Reiss B., Dekker K., Weisshaar B.. An Arabidopsis thaliana T‐DNA mutagenized population (GABI‐Kat) for flanking sequence tag-based reverse genetics.  Plant Molecular Biology. (2003);  53 247-259
  • 53 Ruuska S. A., Schwender J., Ohlrogge J. B.. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes.  Plant Physiology. (2004);  136 2700-2709
  • 54 Schleiff E., Jelic M., Soll J.. A GTP-driven motor moves proteins across the outer envelope of chloroplasts.  Proceedings of the National Academy of Sciences of the USA. (2003 b);  100 4604-4609
  • 55 Schleiff E., Soll J., Küchler M., Kühlbrandt W., Harrer R.. Characterization of the translocon of the outer envelope of chloroplasts.  Journal of Cell Biology. (2003 a);  160 541-551
  • 56 Schleiff E., Soll J., Sveshnikova N., Tien R., Wright S., Dabney-Smith C., Subramannian C., Bruce B. D.. Structural and guanosine triphosphate/diphosphate requirements for transit peptide recognition by the cytosolic domain of the chloroplast outer envelope receptor, Toc34.  Biochemistry. (2002);  41 1934-1946
  • 57 Schnell D. J., Kessler F., Blobel G.. Isolation of components of the chloroplast protein import machinery.  Science. (1994);  266 1007-1012
  • 58 Seedorf M., Soll J.. Copper chloride, an inhibitor of protein import into chloroplasts.  FEBS Letters. (1995);  367 19-22
  • 59 Seedorf M., Waegemann K., Soll J.. A constituent of the chloroplast import complex represents a new type of GTP-binding protein.  The Plant Journal. (1995);  7 401-411
  • 60 Smith M. D., Rounds C. M., Wang F., Chen K., Afitlhile M., Schnell D. J.. atToc159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins.  Journal of Cell Biology. (2004);  165 323-334
  • 61 Soll J.. Protein import into chloroplasts.  Current Opinion in Plant Biology. (2002);  5 529-535
  • 62 Sveshnikova N., Grimm R., Soll J., Schleiff E.. Topology studies of the chloroplast protein import channel Toc75.  Biological Chemistry. (2000);  381 687-693
  • 63 Tranel P. J., Froehlich J., Goyal A., Keegstra K.. A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway.  EMBO Journal. (1995);  14 2436-2446
  • 64 Tzafrir I., Pena-Murella R., Dickerman A., Berg M., Rogers R., Hutchens S., Sweeney T. C., McElvers J., Aux G., Patton D., Meinke D.. Identification of genes required for embryo development in Arabidopsis. .  Plant Physiology. (2004);  135 1206-1220
  • 65 Uwer U., Willmitzer L., Altmann T.. Inactivation of a glycyl-tRNA synthetase leads to an arrest in plant embryo development.  Plant Cell. (1998);  10 1277-1294
  • 66 Voigt A., Jakob M., Klösgen R. B., Gutensohn M.. At least two Toc34 protein import receptors with different specificities are also present in spinach chloroplasts.  FEBS Letters. (2005);  579 1343-1349
  • 67 Vojta A., Alavi M., Becker T., Hörmann F., Küchler M., Soll J., Thomson R., Schleiff E.. The protein translocon of the plastid envelopes.  Journal of Biological Chemistry. (2004);  279 21401-21405
  • 68 Voulhoux R., Bos M. P., Geurtsen J., Mols M., Tommassen J.. Role of a highly conserved bacterial protein in outer membrane protein assembly.  Science. (2003);  299 262-265
  • 69 Yadegari R., de Paiva G. R., Laux T., Koltunow A. M., Apuya N., Zimmerman J. L., Fischer R. L., Harada J. J., Goldberg R. B.. Cell differentiation and morphogenesis are uncoupled in Arabidopsis raspberry embryos.  Plant Cell. (1994);  6 1713-1729
  • 70 Yu B., Wakao S., Fan J., Benning C.. Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis.  Plant Cell Physiology. (2004);  45 503-510

M. Gutensohn

Institut für Pflanzenphysiologie
Martin-Luther-Universität Halle-Wittenberg

Weinbergweg 10

06120 Halle/Saale

Email: gutensohn@pflanzenphys.uni-halle.de

Editor: M. Sugita

    >