Plant Biol (Stuttg) 2006; 8(2): 186-197
DOI: 10.1055/s-2005-873052
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Differential Regulation of Five Pht1 Phosphate Transporters from Maize (Zea mays L.)

R. Nagy[*] 1 , M. J. V. Vasconcelos[*] 2 , S. Zhao3 , J. McElver4 , W. Bruce3 , N. Amrhein5 , K. G. Raghothama2 , M. Bucher1
  • 1Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, 8315 Lindau, Switzerland
  • 2Department of Horticulture and Landscape Architecture, Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907, USA
  • 3Pioneer Hi-Bred Intl., 7300 NW 62nd Ave, Johnston, IA 50131, USA
  • 4BASF Plant Science, L. L. C. Research Triangle Park, 26 Davis Drive, NC 27709, USA
  • 5Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland
Further Information

Publication History

Received: June 20, 2005

Accepted: November 15, 2005

Publication Date:
17 March 2006 (online)

Abstract

Maize is one of the most important crops in the developing world, where adverse soil conditions and low fertilizer input are the two main constraints for stable food supply. Understanding the molecular and biochemical mechanisms involved in nutrient uptake is expected to support the development of future breeding strategies aimed at improving maize productivity on infertile soils. Phosphorus is the least mobile macronutrient in the soils and it is often limiting plant growth. In this work, five genes encoding Pht1 phosphate transporters which contribute to phosphate uptake and allocation in maize were identified. In phosphate-starved plants, transcripts of most of the five transporters were present in roots and leaves. Independent of the phosphate supply, expression of two genes was predominant in pollen or in roots colonized by symbiotic mycorrhizal fungi, respectively. Interestingly, high transcript levels of the mycorrhiza-inducible gene were also detectable in leaves of phosphate-starved plants. Thus, differential expression of Pht1 phosphate transporters in maize suggests involvement of the encoded proteins in diverse processes, including phosphate uptake from soil and transport at the symbiotic interface in mycorrhizas, phosphate (re)translocation in the shoot, and phosphate uptake during pollen tube growth.

References

  • 2 Biddulph O., Biddulph S., Cory R., Koontz H.. Circulation patterns for phosphorus, sulfur and calcium in the bean plant.  Plant Physiology. (1958);  33 293-300
  • 3 Blomstedt C. K., Knox R. B., Singh M. B.. Generative cells of Lilium longiflorum possess translatable mRNA and functional protein synthesis machinery.  Plant Molecular Biology. (1996);  31 1083-1086
  • 4 Brawn R. I.. Breeding corn for earliness.  Proceedings of the Annual Corn Sorghum Research Conference. (1968);  23 59-66
  • 5 Bucher M., Brunner S., Zimmermann P., Zardi G. I., Amrhein N., Willmitzer L., Riesmeier J. W.. The expression of an extensin-like protein correlates with cellular tip growth in tomato.  Plant Physiology. (2002);  128 911-923
  • 6 Bucher M., Rausch C., Daram P.. Molecular and biochemical mechanisms of phosphorus uptake into plants.  Journal of Plant Nutrition and Soil Science. (2001);  164 209-217
  • 7 Chiou T. J., Liu H., Harrison M. J.. The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface.  The Plant Journal. (2001);  25 281-293
  • 8 Chomczynski P., Sacchi N.. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.  Analytical Biochemistry. (1987);  162 156-159
  • 9 Daram P., Brunner S., Persson B. L., Amrhein N., Bucher M.. Functional analysis and cell-specific expression of a phosphate transporter from tomato.  Planta. (1998);  206 225-233
  • 11 Davies T. G. E., Ying J., Xu Q., Li Z. S., Li J., Gordon-Weeks R.. Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats.  Plant, Cell and Environment. (2002);  25 1325-1339
  • 12 Dellaporta S. L., Wood J., Hicks J. B.. A plant DNA minipreparation: version II.  Plant Molecular Biology Reports. (1983);  1 19-21
  • 13 FAO .World Agriculture: Towards 2015/2030. An FAO Perspective. Earthscan Publications Ltd., in association with Food and Agriculture Organization (FAO), London. (2003)
  • 14 Feng G., Zhang F. S., Li X. L., Tian C. Y., Tang C., Rengel Z.. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots.  Mycorrhiza. (2002);  12 185-190
  • 15 Gardiner J., Schroeder S., Polacco M. L., Sanchez-Villeda H., Fang Z., Morgante M., Landewe T., Fengler K., Useche F., Hanafey M., Tingey S., Chou H., Wing R., Soderlund C., Coe Jr. E. H.. Anchoring 9,371 maize expressed sequence tagged unigenes to the bacterial artificial chromosome contig map by two-dimensional overgo hybridization.  Plant Physiology. (2004);  134 1317-1326
  • 16 Gordon-Weeks R., Tong Y., Davies T. G., Leggewie G.. Restricted spatial expression of a high-affinity phosphate transporter in potato roots.  Journal of Cell Science. (2003);  116 3135-3144
  • 17 Harrison M. J., Dewbre G. R., Liu J. Y.. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi.  Plant Cell. (2002);  14 2413-2429
  • 18 Helsper J. P. F. G., Linskens H. F., Jackson J. F.. Phytate metabolism in petunia pollen.  Phytochemistry. (1984);  23 1841-1845
  • 19 Herrera-Estrella L.. Transgenic plants for tropical regions: some considerations about their development and their transfer to the small farmer.  Proceedings of the National Academy of Sciences of the USA. (1999);  96 5978-5981
  • 20 Himelblau E., Amasino R. M.. Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence.  Journal of Plant Physiology. (2001);  158 1317-1323
  • 22 Hoagland D., Broyer T.. General nature of the process of salt accumulation by roots with description of experimental methods.  Plant Physiology. (1936);  11 471-507
  • 23 Hocking P. J.. Dry-matter production, mineral nutrient concentrations, and nutrient distribution and redistribution in irrigated spring wheat.  Journal of Plant Nutrition. (1994);  17 1289-1308
  • 25 Jackson J. F., Jones G., Linskens H. F.. Phytic acid in pollen.  Phytochemistry. (1982);  21 1255-1258
  • 26 Jeschke W. D., Kirkby E. A., Peuke A. D., Pate J. S., Hartung W.. Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus communis L.).  Journal of Experimental Botany. (1997);  48 75-91
  • 27 Karandashov V., Nagy R., Wegmüller S., Amrhein N., Bucher M.. Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis.  Proceedings of the National Academy of Sciences of the USA. (2004);  101 6285-6290
  • 28 Karandashov V., Bucher M.. Symbiotic phosphate transport in arbuscular mycorrhizas.  Trends in Plant Science. (2005);  10 22-29
  • 29 Karthikeyan A. S., Varadarajan D. K., Mukatira U. T., D′Urzo M. P., Damsz B., Raghothama K. G.. Regulated expression of Arabidopsis phosphate transporters.  Plant Physiology. (2002);  130 221-233
  • 30 Kothari S. K., Marschner H., George E.. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize.  New Phytologist. (1990);  116 303-311
  • 31 Leggewie G., Willmitzer L., Riesmeier J. W.. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants.  Plant Cell. (1997);  9 381-392
  • 32 Liu C., Muchhal U. S., Uthappa M., Kononowicz A. K., Raghothama K. G.. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus.  Plant Physiology. (1998 a);  116 91-99
  • 33 Liu H., Trieu A. T., Blaylock L. A., Harrison M. J.. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and response to colonization by arbuscular mycorrhizal (AM) fungi.  Molecular Plant-Microbe Interactions. (1998 b);  11 14-22
  • 35 Marschner H.. Mineral Nutrition of Higher Plants. London, San Diego; Academic Press (1995)
  • 36 Martinez P., Persson B. L.. Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae.  Molecular and General Genetics. (1998);  258 628-638
  • 37 Mascarenhas J. P.. Gene activity during pollen development.  Annual Review of Plant Physiology and Plant Molecular Biology. (1990);  41 317-338
  • 38 Mimura T., Sakano K., Shimmen T.. Studies on the distribution, re-translocation and homeostasis of inorganic phosphate in barley leaves.  Plant, Cell and Environment. (1996);  19 311-320
  • 39 Misson J., Thibaud M. C., Bechtold N., Raghothama K., Nussaume L.. Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants.  Plant Molecular Biology. (2004);  55 727-741
  • 40 Mitsukawa N., Okumura S., Shirano Y., Sato S., Kato T., Harashima S., Shibata D.. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions.  Proceedings of the National Academy of Sciences of the USA. (1997);  94 7098-7102
  • 41 Muchhal U. S., Pardo J. M., Raghothama K. G.. Phosphate transporters from the higher plant Arabidopsis thaliana.  Proceedings of the National Academy of Sciences of the USA. (1996);  93 10519-10523
  • 42 Mudge S. R., Rae A. L., Diatloff E., Smith F. W.. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis.  The Plant Journal. (2002);  31 341-353
  • 43 Nagy R., Karandashov V., Chague V., Kalinkevich K., Tamasloukht B., Xu G., Jakobsen I., Levy A. A., Amrhein N., Bucher M.. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species.  The Plant Journal. (2005);  42 236-250
  • 44 Nandi S., Pant R., Nissen P.. Multiphasic uptake of phosphate by corn roots.  Plant, Cell and Environment. (1987);  10 463-474
  • 45 Nissen P.. Multiple or multiphasic uptake mechanisms in plants?.  Plant, Cell and Environment. (1987);  10 475-486
  • 46 Paszkowski U., Kroken S., Roux C., Briggs S. P.. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 13324-13329
  • 47 Pawlowski K., Kunze R., De Vries S., Bisseling T.. Isolation of total, poly (A) and polysomal RNA from plant tissues. Gelvin S. B. and Shilperoort R. A., eds. Plant Molecular Biology Manual. Dordrecht, The Netherlands; Kluwer Academic Publishers (1994): 1-13
  • 48 Rae A. L., Cybinski D. H., Jarmey J. M., Smith F. W.. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family.  Plant Molecular Biology. (2003);  53 27-36
  • 49 Rausch C., Daram P., Brunner S., Jansa J., Laloi M., Leggewie G., Amrhein N., Bucher M.. A phosphate transporter expressed in arbuscule-containing cells in potato.  Nature. (2001);  414 462-466
  • 50 Rausch C., Zimmermann P., Amrhein N., Bucher M.. Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto- and heterotrophic tissues in potato and Arabidopsis.  The Plant Journal. (2004);  39 13-28
  • 51 Sambrook J., Frisch E. F., Maniatis T.. Molecular Cloning: A Laboratory Manual. Cold Spring Harbour, NY; Cold Spring Harbour Press (1989)
  • 52 Schünmann P. H. D., Richardson A., Smith F. W., Delhaize E.. Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.).  Journal of Experimental Biology. (2004);  55 855-865
  • 53 Scott J. W., Harbaugh B. K.. Micro-Tom - a miniature dwarf tomato.  Florida Agricultural Experiment Station Circular. (1989);  370 1-6
  • 54 Shin H., Shin H. S., Dewbre G. R., Harrison M. J.. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments.  The Plant Journal. (2004);  39 629-642
  • 55 Smith S. E., Read D. J.. Mycorrhizal Symbiosis. Cambridge, UK; Academic Press Ltd. (1997)
  • 56 Smith S. E., Smith F. A., Jakobsen I.. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses.  Plant Physiology. (2003);  133 16-20
  • 57 Smith S. E., Smith F. A., Jakobsen I.. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake.  New Phytologist. (2004);  162 511-524
  • 58 Stadler R., Truernit E., Gahrtz M., Sauer N.. The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis.  The Plant Journal. (1999);  19 269-278
  • 59 Steiner C., Bauer J., Amrhein N., Bucher M.. Two novel genes are differentially expressed during early germination of the male gametophyte of Nicotiana tabacum.  Biochimica et Biophysica Acta. (2003);  1625 123-133
  • 60 Subramanian K. S., Charest C.. Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling.  Mycorrhiza. (1997);  7 25-32
  • 61 Sylvia D. M., Hammond L. C., Bennett J. M., Haas J. H., Linda S. B.. Field response of maize to a VAM fungus and water management.  Agronomy Journal. (1993);  85 193-198
  • 62 Swigonova Z., Lai J., Ma J., Ramakrishna W., Llaca V., Bennetzen J. L., Messing J.. On the tetraploid origin of the maize genome.  Comparative and Functional Genomics. (2004);  5 281-284
  • 63 Tamai Y., Toh-e A., Oshima Y.. Regulation of inorganic phosphate transport systems in Saccharomyces cerevisiae.  Journal of Bacteriology. (1985);  164 964-968
  • 64 Verwoerd T. C., Dekker B. M. M., Hockema A.. A small-scale procedure for the rapid isolation of plant RNAs.  Nucleic Acids Research. (1989);  17 2362
  • 65 Vierheilig H., Coughlan A. P., Wyss U., Piche Y.. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi.  Applied and Environmental Microbiology. (1998);  64 5004-5007
  • 66 Wen T. J., Schnable P. S.. Analyses of mutants of 3 genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable.  American Journal of Botany. (1994);  81 833-842
  • 67 Wright D. P., Scholes J. D., Read D. J., Rolfe S. A.. European and African maize cultivars that differ in their physiological and molecular responses to mycorrhizal infection.  New Phytologist. (2005);  167 881-896
  • 68 Wykoff D. D., O'Shea E. K.. Phosphate transport and sensing in Saccharomyces cerevisiae.  Genetics. (2001);  159 1491-1499
  • 69 Ylstra B., McCormick S.. Analysis of mRNA stabilities during pollen development and in BY2 cells.  The Plant Journal. (1999);  20 101-108
  • 70 Zimmermann P., Zardi G., Lehmann M., Zeder C., Amrhein N., Frossard E., Bucher M.. Engineering the root-soil interface via targeted expression of a synthetic phytase gene in trichoblasts.  Plant Biotechnology Journal. (2003);  1 353-360

1 * Both authors contributed equally to this work

M. Bucher

Federal Institute of Technology (ETH) Zurich
Institute of Plant Sciences

Experimental Station Eschikon 33

8315 Lindau

Switzerland

Email: marcel.bucher@ipw.biol.ethz.ch

Editor: M. Hawkesford

    >