Abstract
Maize is one of the most important crops in the developing world, where adverse soil
conditions and low fertilizer input are the two main constraints for stable food supply.
Understanding the molecular and biochemical mechanisms involved in nutrient uptake
is expected to support the development of future breeding strategies aimed at improving
maize productivity on infertile soils. Phosphorus is the least mobile macronutrient
in the soils and it is often limiting plant growth. In this work, five genes encoding
Pht1 phosphate transporters which contribute to phosphate uptake and allocation in
maize were identified. In phosphate-starved plants, transcripts of most of the five
transporters were present in roots and leaves. Independent of the phosphate supply,
expression of two genes was predominant in pollen or in roots colonized by symbiotic
mycorrhizal fungi, respectively. Interestingly, high transcript levels of the mycorrhiza-inducible
gene were also detectable in leaves of phosphate-starved plants. Thus, differential
expression of Pht1 phosphate transporters in maize suggests involvement of the encoded
proteins in diverse processes, including phosphate uptake from soil and transport
at the symbiotic interface in mycorrhizas, phosphate (re)translocation in the shoot,
and phosphate uptake during pollen tube growth.
Key words
Gene expression -
Zea mays
- phosphate uptake - phosphate transporter - mycorrhiza.
References
2
Biddulph O., Biddulph S., Cory R., Koontz H..
Circulation patterns for phosphorus, sulfur and calcium in the bean plant.
Plant Physiology.
(1958);
33
293-300
3
Blomstedt C. K., Knox R. B., Singh M. B..
Generative cells of Lilium longiflorum possess translatable mRNA and functional protein synthesis machinery.
Plant Molecular Biology.
(1996);
31
1083-1086
4
Brawn R. I..
Breeding corn for earliness.
Proceedings of the Annual Corn Sorghum Research Conference.
(1968);
23
59-66
5
Bucher M., Brunner S., Zimmermann P., Zardi G. I., Amrhein N., Willmitzer L., Riesmeier J. W..
The expression of an extensin-like protein correlates with cellular tip growth in
tomato.
Plant Physiology.
(2002);
128
911-923
6
Bucher M., Rausch C., Daram P..
Molecular and biochemical mechanisms of phosphorus uptake into plants.
Journal of Plant Nutrition and Soil Science.
(2001);
164
209-217
7
Chiou T. J., Liu H., Harrison M. J..
The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface.
The Plant Journal.
(2001);
25
281-293
8
Chomczynski P., Sacchi N..
Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform
extraction.
Analytical Biochemistry.
(1987);
162
156-159
9
Daram P., Brunner S., Persson B. L., Amrhein N., Bucher M..
Functional analysis and cell-specific expression of a phosphate transporter from tomato.
Planta.
(1998);
206
225-233
11
Davies T. G. E., Ying J., Xu Q., Li Z. S., Li J., Gordon-Weeks R..
Expression analysis of putative high-affinity phosphate transporters in Chinese winter
wheats.
Plant, Cell and Environment.
(2002);
25
1325-1339
12
Dellaporta S. L., Wood J., Hicks J. B..
A plant DNA minipreparation: version II.
Plant Molecular Biology Reports.
(1983);
1
19-21
13 FAO .World Agriculture: Towards 2015/2030. An FAO Perspective. Earthscan Publications
Ltd., in association with Food and Agriculture Organization (FAO), London. (2003)
14
Feng G., Zhang F. S., Li X. L., Tian C. Y., Tang C., Rengel Z..
Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related
to higher accumulation of soluble sugars in roots.
Mycorrhiza.
(2002);
12
185-190
15
Gardiner J., Schroeder S., Polacco M. L., Sanchez-Villeda H., Fang Z., Morgante M.,
Landewe T., Fengler K., Useche F., Hanafey M., Tingey S., Chou H., Wing R., Soderlund C.,
Coe Jr. E. H..
Anchoring 9,371 maize expressed sequence tagged unigenes to the bacterial artificial
chromosome contig map by two-dimensional overgo hybridization.
Plant Physiology.
(2004);
134
1317-1326
16
Gordon-Weeks R., Tong Y., Davies T. G., Leggewie G..
Restricted spatial expression of a high-affinity phosphate transporter in potato roots.
Journal of Cell Science.
(2003);
116
3135-3144
17
Harrison M. J., Dewbre G. R., Liu J. Y..
A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi.
Plant Cell.
(2002);
14
2413-2429
18
Helsper J. P. F. G., Linskens H. F., Jackson J. F..
Phytate metabolism in petunia pollen.
Phytochemistry.
(1984);
23
1841-1845
19
Herrera-Estrella L..
Transgenic plants for tropical regions: some considerations about their development
and their transfer to the small farmer.
Proceedings of the National Academy of Sciences of the USA.
(1999);
96
5978-5981
20
Himelblau E., Amasino R. M..
Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence.
Journal of Plant Physiology.
(2001);
158
1317-1323
22
Hoagland D., Broyer T..
General nature of the process of salt accumulation by roots with description of experimental
methods.
Plant Physiology.
(1936);
11
471-507
23
Hocking P. J..
Dry-matter production, mineral nutrient concentrations, and nutrient distribution
and redistribution in irrigated spring wheat.
Journal of Plant Nutrition.
(1994);
17
1289-1308
25
Jackson J. F., Jones G., Linskens H. F..
Phytic acid in pollen.
Phytochemistry.
(1982);
21
1255-1258
26
Jeschke W. D., Kirkby E. A., Peuke A. D., Pate J. S., Hartung W..
Effects of P deficiency on assimilation and transport of nitrate and phosphate in
intact plants of castor bean (Ricinus communis L.).
Journal of Experimental Botany.
(1997);
48
75-91
27
Karandashov V., Nagy R., Wegmüller S., Amrhein N., Bucher M..
Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal
symbiosis.
Proceedings of the National Academy of Sciences of the USA.
(2004);
101
6285-6290
28
Karandashov V., Bucher M..
Symbiotic phosphate transport in arbuscular mycorrhizas.
Trends in Plant Science.
(2005);
10
22-29
29
Karthikeyan A. S., Varadarajan D. K., Mukatira U. T., D′Urzo M. P., Damsz B., Raghothama K. G..
Regulated expression of Arabidopsis phosphate transporters.
Plant Physiology.
(2002);
130
221-233
30
Kothari S. K., Marschner H., George E..
Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology,
growth and water relations in maize.
New Phytologist.
(1990);
116
303-311
31
Leggewie G., Willmitzer L., Riesmeier J. W..
Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant:
identification of phosphate transporters from higher plants.
Plant Cell.
(1997);
9
381-392
32
Liu C., Muchhal U. S., Uthappa M., Kononowicz A. K., Raghothama K. G..
Tomato phosphate transporter genes are differentially regulated in plant tissues by
phosphorus.
Plant Physiology.
(1998 a);
116
91-99
33
Liu H., Trieu A. T., Blaylock L. A., Harrison M. J..
Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and response to colonization by arbuscular
mycorrhizal (AM) fungi.
Molecular Plant-Microbe Interactions.
(1998 b);
11
14-22
35 Marschner H.. Mineral Nutrition of Higher Plants. London, San Diego; Academic Press
(1995)
36
Martinez P., Persson B. L..
Identification, cloning and characterization of a derepressible Na+ -coupled phosphate transporter in Saccharomyces cerevisiae .
Molecular and General Genetics.
(1998);
258
628-638
37
Mascarenhas J. P..
Gene activity during pollen development.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1990);
41
317-338
38
Mimura T., Sakano K., Shimmen T..
Studies on the distribution, re-translocation and homeostasis of inorganic phosphate
in barley leaves.
Plant, Cell and Environment.
(1996);
19
311-320
39
Misson J., Thibaud M. C., Bechtold N., Raghothama K., Nussaume L..
Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate
deprived plants.
Plant Molecular Biology.
(2004);
55
727-741
40
Mitsukawa N., Okumura S., Shirano Y., Sato S., Kato T., Harashima S., Shibata D..
Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell
growth under phosphate-limited conditions.
Proceedings of the National Academy of Sciences of the USA.
(1997);
94
7098-7102
41
Muchhal U. S., Pardo J. M., Raghothama K. G..
Phosphate transporters from the higher plant Arabidopsis thaliana .
Proceedings of the National Academy of Sciences of the USA.
(1996);
93
10519-10523
42
Mudge S. R., Rae A. L., Diatloff E., Smith F. W..
Expression analysis suggests novel roles for members of the Pht1 family of phosphate
transporters in Arabidopsis .
The Plant Journal.
(2002);
31
341-353
43
Nagy R., Karandashov V., Chague V., Kalinkevich K., Tamasloukht B., Xu G., Jakobsen I.,
Levy A. A., Amrhein N., Bucher M..
The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species.
The Plant Journal.
(2005);
42
236-250
44
Nandi S., Pant R., Nissen P..
Multiphasic uptake of phosphate by corn roots.
Plant, Cell and Environment.
(1987);
10
463-474
45
Nissen P..
Multiple or multiphasic uptake mechanisms in plants?.
Plant, Cell and Environment.
(1987);
10
475-486
46
Paszkowski U., Kroken S., Roux C., Briggs S. P..
Rice phosphate transporters include an evolutionarily divergent gene specifically
activated in arbuscular mycorrhizal symbiosis.
Proceedings of the National Academy of Sciences of the USA.
(2002);
99
13324-13329
47 Pawlowski K., Kunze R., De Vries S., Bisseling T..
Isolation of total, poly (A) and polysomal RNA from plant tissues. Gelvin S. B. and Shilperoort R. A., eds. Plant Molecular Biology Manual. Dordrecht,
The Netherlands; Kluwer Academic Publishers (1994): 1-13
48
Rae A. L., Cybinski D. H., Jarmey J. M., Smith F. W..
Characterization of two phosphate transporters from barley; evidence for diverse function
and kinetic properties among members of the Pht1 family.
Plant Molecular Biology.
(2003);
53
27-36
49
Rausch C., Daram P., Brunner S., Jansa J., Laloi M., Leggewie G., Amrhein N., Bucher M..
A phosphate transporter expressed in arbuscule-containing cells in potato.
Nature.
(2001);
414
462-466
50
Rausch C., Zimmermann P., Amrhein N., Bucher M..
Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto- and heterotrophic tissues in potato and Arabidopsis .
The Plant Journal.
(2004);
39
13-28
51 Sambrook J., Frisch E. F., Maniatis T.. Molecular Cloning: A Laboratory Manual. Cold
Spring Harbour, NY; Cold Spring Harbour Press (1989)
52
Schünmann P. H. D., Richardson A., Smith F. W., Delhaize E..
Characterization of promoter expression patterns derived from the Pht1 phosphate transporter
genes of barley (Hordeum vulgare L.).
Journal of Experimental Biology.
(2004);
55
855-865
53
Scott J. W., Harbaugh B. K..
Micro-Tom - a miniature dwarf tomato.
Florida Agricultural Experiment Station Circular.
(1989);
370
1-6
54
Shin H., Shin H. S., Dewbre G. R., Harrison M. J..
Phosphate transport in Arabidopsis : Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments.
The Plant Journal.
(2004);
39
629-642
55 Smith S. E., Read D. J.. Mycorrhizal Symbiosis. Cambridge, UK; Academic Press Ltd.
(1997)
56
Smith S. E., Smith F. A., Jakobsen I..
Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses.
Plant Physiology.
(2003);
133
16-20
57
Smith S. E., Smith F. A., Jakobsen I..
Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of
the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth
or total P uptake.
New Phytologist.
(2004);
162
511-524
58
Stadler R., Truernit E., Gahrtz M., Sauer N..
The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence
and pollen tube growth in Arabidopsis .
The Plant Journal.
(1999);
19
269-278
59
Steiner C., Bauer J., Amrhein N., Bucher M..
Two novel genes are differentially expressed during early germination of the male
gametophyte of Nicotiana tabacum .
Biochimica et Biophysica Acta.
(2003);
1625
123-133
60
Subramanian K. S., Charest C..
Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling.
Mycorrhiza.
(1997);
7
25-32
61
Sylvia D. M., Hammond L. C., Bennett J. M., Haas J. H., Linda S. B..
Field response of maize to a VAM fungus and water management.
Agronomy Journal.
(1993);
85
193-198
62
Swigonova Z., Lai J., Ma J., Ramakrishna W., Llaca V., Bennetzen J. L., Messing J..
On the tetraploid origin of the maize genome.
Comparative and Functional Genomics.
(2004);
5
281-284
63
Tamai Y., Toh-e A., Oshima Y..
Regulation of inorganic phosphate transport systems in Saccharomyces cerevisiae .
Journal of Bacteriology.
(1985);
164
964-968
64
Verwoerd T. C., Dekker B. M. M., Hockema A..
A small-scale procedure for the rapid isolation of plant RNAs.
Nucleic Acids Research.
(1989);
17
2362
65
Vierheilig H., Coughlan A. P., Wyss U., Piche Y..
Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi.
Applied and Environmental Microbiology.
(1998);
64
5004-5007
66
Wen T. J., Schnable P. S..
Analyses of mutants of 3 genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable.
American Journal of Botany.
(1994);
81
833-842
67
Wright D. P., Scholes J. D., Read D. J., Rolfe S. A..
European and African maize cultivars that differ in their physiological and molecular
responses to mycorrhizal infection.
New Phytologist.
(2005);
167
881-896
68
Wykoff D. D., O'Shea E. K..
Phosphate transport and sensing in Saccharomyces cerevisiae .
Genetics.
(2001);
159
1491-1499
69
Ylstra B., McCormick S..
Analysis of mRNA stabilities during pollen development and in BY2 cells.
The Plant Journal.
(1999);
20
101-108
70
Zimmermann P., Zardi G., Lehmann M., Zeder C., Amrhein N., Frossard E., Bucher M..
Engineering the root-soil interface via targeted expression of a synthetic phytase
gene in trichoblasts.
Plant Biotechnology Journal.
(2003);
1
353-360
1 * Both authors contributed equally to this work
M. Bucher
Federal Institute of Technology (ETH) Zurich Institute of Plant Sciences
Experimental Station Eschikon 33
8315 Lindau
Switzerland
Email: marcel.bucher@ipw.biol.ethz.ch
Editor: M. Hawkesford