References
1a
Meyer B.
Weimar T.
Peters T.
Eur. J. Biochem.
1997,
246:
705
1b
Haselhorst T.
Espinosa JF.
Jimenez-Barbero J.
Sokolowski T.
Kosma P.
Brade H.
Brade L.
Peters T.
Biochemistry
1999,
38:
6449
1c
Mayer M.
Meyer B.
J. Med. Chem.
2000,
43:
2093
2
Mayer M.
Meyer B.
J. Am. Chem. Soc.
2001,
123:
6108
3
van Halbeek H.
Curr. Opin. Struct. Biol.
1994,
4:
697
4
Snyder JR.
Serianni AS.
Carbohydr. Res.
1987,
163:
169
5
Hayes ML.
Pennings NJ.
Serianni AS.
Barker R.
J. Am. Chem. Soc.
1982,
104:
6764
6a
Wendeborn S.
Nussbaumer S.
Hannes RF.
Joerg M.
Pachlatko JP.
Tetrahedron Lett.
2002,
43:
31
6b
Xu Z.
Johannes CW.
Salman SS.
Hoveyda AH.
J. Am. Chem. Soc.
1996,
118:
10926
7
Typical Experimental for Synthesis of 5.
To a solution of 4 (2.169 g, 8.66 mmol) in MeOH (146.5 mL) and H2O (19 mL) was added p-TSA (165 mg, 0.866 mmol) and the reaction mixture was stirred at 60 °C until no starting material was visible by TLC. The solvent were removed and chromatography afforded 5 as a white solid (1.172 g, 7.10 mmol, 82%). 1H NMR (300 MHz, MeOD): δ = 4.34 [1 H, ddd, J = 142.8, 8.7, 4.9 Hz, 13CO13CH(OH)], 4.22-4.15 [1 H, m, 13CO13CH(OH)CH(OH)], 3.95-3.87 [1 H, m, CH(OH)CH(OH)CH3], 3.95-3.87 (1 H, m, CHCH3), 1.32 (3 H, d, J = 6.4 Hz, OCHCH
3). 13C NMR (75.5 MHz, MeOD): δ = 177.5, 176.8 [d, J = 55.9 Hz, 13
CO13CH(OH)], 77.2, 76.4 (d, J = 55.9 Hz, 13CO13
CH(OH)]. HRMS (+ES): m/z calcd for C4
13C2H10O5: 182.0939. Found: 182.0936 [M + NH4]+. Mp 91-95 °C. [α]D
22 +60.8 (c 0.5, H2O).
8
Matsumoto T.
Hosoya T.
Suzuki K.
J. Am. Chem. Soc.
1992,
114:
3568
9
Balitz DM.
O’Herron FA.
Bush J.
Vyas DM.
Netiletron DE.
Grulich RE.
Bradner WT.
Doyle TW.
Arnold E.
Clardy J.
J. Antibiot.
1981,
34:
1544
10
Jain TC.
Simolike GC.
Jackman LM.
Tetrahedron Lett.
1983,
39:
599
11
Typical Experimental for Synthesis of 7:
DIBAL (0.52 mL, 0.52 mmol) was added dropwise to a solution of 6 (86.6 mg, 0.17 mmol) in CH2Cl2 (3 mL) at
-78 °C. After 1 h the reaction was quenched with MeOH and the solvent was removed. The colourless oil was purified by chromatography to give 7 as white crystals (84 mg, 0.17 mmol, 97%). 1H NMR (300 MHz, CDCl3): β-anomer, δ = 5.16 (1 H, ddt, 1
J
13
CH = 171.8 Hz, 3
J
13
C
H
O
H
= 12.1 Hz and 3
J
13
CH
13
CH = 4.1 Hz), 4.11-4.07 (1 H, m), 4.00-3.80 (2 H, m), 3.82 (1 H, ddd, J = 12.1, 4.9, 1.5 Hz), 3.68-3.63 (1 H, m), 1.21 (3 H, d, J = 6.4 Hz); α-anomer, δ = 5.06 (1 H, dd, 1
J
13
CH = 174.8 Hz, 3
J
13
C
H
O
H
= 12.1 Hz), 4.00-3.82 (4 H, m), 3.56 (1 H, ddd, J = 12.1, 4.9, 2.3 Hz), 1.12 (3 H, d, J = 6.0 Hz). Both anomers, δ = 0.92-0.88 (54 H, m). 13C NMR (75.5 MHz, CDCl3): β-anomer, δ = 97.9 (d, 1
J
13
CH
13
CH = 41.4 Hz), 80.8 (d, 1
J
13
CH
13
CH = 41.4 Hz). α-anomer, δ = 104.0 (d, 1
J
13
CH
13
CH = 44.3 Hz), 81.8 (d, 1
J
13
CH
13
CH = 44.3 Hz). HRMS (+ES): m/z calcd for C22
13C2H54O5Si3: 531.33245. Found: 531.3243 [M + Na]+. These assignments are consistent with data for a number of related furanose and furanoside structures where the 1,2-trans isomer shows the more downfield 13C shift for C1 and the smaller J
1,2.
[12]
The nomenclature is consistent with IUPAC conventions for C6 furanosides.
[13]
This reaction has also been carried out on multi-gram scale.
12a
Takahasi S.
Kuzuhara H.
J. Chem. Soc., Perkin Trans. 1
1997,
607
12b
Kinoshita T.
Miwa T.
Clardy J.
Carbohydr. Res.
1985,
143:
249
12c
Angyal SJ.
Pickles VA.
Aust. J. Chem.
1972,
25:
1695
13
McNaught AD.
Pure Appl. Chem.
1996,
68:
1919
14 The unlabelled peracylated analogue of 7 has been described, prepared by homologation from the precursor C5 aldehyde: Shunya Takahashi S.
Kuzuhara H.
J. Chem. Soc., Perkin Trans. 1
1997,
607
15 The crystal structures both showed four independent molecules in the unit cell, each differing in conformations about C-O bonds, with little evidence of intramolecular H-bonding. These structures are also noteworthy as there are few X-ray structures of 13C2-labelled compounds.
16
Typical Experimental for Synthesis of 8.
To a solution of 7 (150 mg, 0.295 mmol) in dioxane-H2O was added concd HCl. The mixture was stirred overnight. Filtration through Amberlite and removal of the solvents afforded the crude sugar. Then, Ac2O (10 equiv, 2.95 mmol, 0.278 mL), pyridine (12 equiv, 3.54 mmol, 0.286 mL) and CH2Cl2 (5 mL) were added and the mixture stirred for 14 h. The reaction was quenched by the addition of H2O and washed with CuSO4 solution. Purification by chromatography yielded 8 as white crystals (94.7 mg, 0.28 mmol, 96%). 1H NMR (400 MHz, CDCl3): β-anomer, δ = 5.68 (1 H, dd, J = 174.5, 7.9 Hz, H1), 5.60 (1 H, dd, J = 113.4, 10.2, 7.9 Hz), 5.33-5.27 (1 H, m), 5.13-5.08 (1 H, m), 3.99-3.94 (1 H, dd, J = 12.1, 6.4, 6.0 Hz), 2.20, 2.13, 2.05, 2.01 (3 H, s), 1.24 (3 H, d, J = 6.4 Hz, H6); α-anomer, δ = 6.65 (1 H, dd, J = 177.8, 3.4 Hz, H1), 5.35 (2 H, m), 5.08 (1 H, ddd, J = 153.7, 9.8, 3.4 Hz, H2), 4.28 (1 H, dd, J = 12.8, 6.5 Hz), 1.12 (3 H, d, J = 6.4 Hz, H6). 13C NMR (75.5 MHz, CDCl3): β-anomer, δ = 92.6 (d, J = 47.4 Hz), 68.3 (d, J = 47.4 Hz). α-anomer, δ = 90.50 (d, J = 48.3 Hz), 66.85 (d, J = 48.3 Hz). HRMS (EI): m/z calcd for C12
13C2H20O9: 357.1069. Found: 357.1067 [M + Na]+. α-Anomer: [α]D
22 - 48 (c 1, CHCl3); β-anomer: [α]D
22 -113 (c 1, CHCl3).
17a
Kinoshita T.
Miwa T.
Clardy J.
Carbohydr. Res.
1985,
143:
249
17b
Allavudeen SS.
Kuberan B.
Loganathan D.
Carbohydr. Res.
2002,
337:
965