Abstract
Ru-SYNPHOS® and Ru-DIFLUORPHOS® catalysts were efficiently used for the synthesis of a wide variety of chiral β-hydroxy amides via asymmetric hydrogenation of the corresponding β-keto amides.
Key words
catalysts - hydrogenation - enantioselectivity - ruthenium
References
1
Jacobson IC.
Reddy PG.
Wasserman ZR.
Hardman KD.
Covington MB.
Arner EC.
Copeland RA.
Decicco CP.
Magolda R.
Bioorg. Med. Chem. Lett.
1998,
8:
837
For representative examples of the synthesis of (R )-2 see:
2a
Kakei H.
Nemoto T.
Ohshima T.
Shibasaki M.
Angew. Chem. Int. Ed.
2004,
43:
317 ; and references cited therein
See also:
2b
Corey EJ.
Reichard GA.
Tetrahedron Lett.
1989,
30:
5207
2c
Gao KB.
Sharpless KB.
J. Org. Chem.
1988,
53:
4081
2d
Ratovelomanana-Vidal V.
Girard C.
Touati R.
Tranchier JP.
Ben Hassine B.
Genet JP.
Adv. Synth. Catal.
2003,
345:
261 ; and references cited therein
3
Kuno H.
Shibagaki M.
Matsuzaki T.
Miyano M.
Yasumatsu N.
Koiwai A.
Agric. Biol. Chem.
1989,
53:
2
4
Ohtake N.
Shigemitsu O.
Okamoto O.
Imai Y.
Ushijima R.
Nakagawa S.
Tetrahedron: Asymmetry
1997,
8:
2939
5a
Goodman SN.
Jacobsen EN.
Angew. Chem. Int. Ed.
2002,
41:
4703
5b
Bartoli G.
Bosco M.
Marcantoni E.
Massaccesi M.
Rinaldi S.
Sambri L.
Synthesis
2004,
3092
6
Kawai M.
Tajima K.
Mizuno S.
Niimi K.
Sugioka H.
Butsugan Y.
Kozawa A.
Asano T.
Imai Y.
Bull. Chem. Soc. Jpn.
1988,
61:
3014
7a
Hudlicky T.
Gillman G.
Andersen C.
Tetrahedron: Asymmetry
1992,
3:
281
7b
Fuganti C.
Grasselli P.
Seneci PF.
Casati P.
Tetrahedron Lett.
1986,
27:
5275
8
Quiros M.
Rebolledo F.
Liz R.
Gotor V.
Tetrahedron: Asymmetry
1997,
8:
3035
9
Masanobu Y.
Takashi O.
J. Chem. Soc., Perkin Trans. 1
1990,
1827
10
Kitamura M.
Ohkuma T.
Inoue S.
Sayo N.
Kumobayashi H.
Akutagawa S.
Ohta T.
Takaya H.
Noyori R.
J. Am. Chem. Soc.
1988,
110:
629
11
Kiegiel J.
Jozwik J.
Wozniak K.
Jurczak J.
Tetrahedron Lett.
2000,
41:
4959
12a
Gendre PL.
Offenbecher M.
Bruneau C.
Dixneuf PH.
Tetrahedron: Asymmetry
1998,
9:
2279
12b
Yamano T.
Taya N.
Kawada M.
Huang T.
Imamoto T.
Tetrahedron Lett.
1999,
40:
2577
12c
Yamano T.
Taya N.
Kawada M.
Huang T.
Imamoto T.
Tetrahedron Lett.
1999,
40:
2577
13
Hung H.-L.
Liu LT.
Chen S.-F.
Ku H.
Tetrahedron: Asymmetry
1998,
9:
1637
14a
Wang YF.
Izawa T.
Kobayashi S.
Ohno M.
J. Am. Chem. Soc.
1982,
104:
6465
14b
Hahn H.
Heitsch H.
Rathmann R.
Zimmermann G.
Bornann C.
Zahner H.
König WA.
Liebigs Ann. Chem.
1987,
803
15a
Duprat de Paule S.
Jeulin S.
Ratovelomanana-Vidal V.
Genêt J.-P.
Champion N.
Dellis P.
Tetrahedron Lett.
2003,
44:
823
15b
Duprat de Paule S.
Jeulin S.
Ratovelomanana-Vidal V.
Genêt J.-P.
Champion N.
Dellis P.
Eur. J. Org. Chem.
2003,
1931
15c
Duprat de Paule S.
Jeulin S.
Ratovelomanana-Vidal V.
Genêt
J.-P.
Champion N.
Deschaux G.
Dellis P.
Org. Process. Res. Dev.
2003,
7:
399
16a
Jeulin S.
Duprat de Paule S.
Ratovelomanana-Vidal V.
Genêt J.-P.
Champion N.
Angew. Chem. Int. Ed.
2004,
43:
320
16b
Jeulin S.
Duprat de Paule S.
Ratovelomanana-Vidal V.
Genêt J.-P.
Champion N.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5799
17a
Ratovelomanana-Vidal V.
Genêt J.-P.
J. Organomet. Chem.
1998,
567:
163
17b
Ratovelomanana-Vidal V.
Genêt J.-P.
Can. J. Chem.
2000,
78:
846
17c
Mordant C.
Dünkelmann P.
Ratovelomanana-Vidal V.
Genêt J.-P.
Chem. Commun.
2004,
1296
17d
Mordant C.
Dünkelmann P.
Ratovelomanana-Vidal V.
Genêt J.-P.
Eur. J. Org. Chem.
2004,
3017
17e
Genêt J.-P.
Acc. Chem. Res.
2003,
36:
908
18
Genêt J.-P.
Pinel C.
Ratovelomanana-Vidal V.
Mallart S.
Pfister X.
Caño de Andrade MC.
Laffitte JA.
Tetrahedron: Asymmetry
1994,
5:
665
19 TOP INDUSTRIE S. A., 80, rue Marinoni, BP 38, 77013 Vaulx le penil Cedex, France; www.top-industrie.com.
20a
Oikawa Y.
Sugano K.
Yonemitsu O.
J. Org. Chem.
1978,
43:
2087
20b
Siek Pak C.
Cheol Yang H.
Bok Choi E.
Synthesis
1992,
1213
21
Noyori R. In Asymmetric Catalysis in Organic Synthesis
J. Wiley;
New York:
1994.
p.16
22a
Mashima K.
Nakamura T.
Matsuo Y.
Tani K.
J. Organomet. Chem.
2000,
607:
51
22b
Mashima K.
Kusano K.
Sato N.
Matsumura Y.
Nozaki K.
Kumobayashi H.
Sayo N.
Hori Y.
Ishizaki T.
Akutagawa S.
Takaya H.
J. Org. Chem.
1994,
59:
3064
23
General Hydrogenation Procedure.
(S )-SYNPHOS (7.5 mg, 1.2 × 10-2 mmol) and (COD)Ru(2-methylallyl)2 (3.2 mg, 1.0 × 10-2 mmol) were placed in a 5 mL flask and 2 mL of anhyd acetone were added. A methanolic solution of HBr (0.122 µL, 0.18 M) was added to the resulting suspension and the reaction mixture was stirred at r.t. for about 30 min. The solvent was removed under vacuum. The yellow solid residue was used as catalyst for the hydrogenation reaction. Then, MeOH (4 mL), acetoacetanilide (5 , 177 mg, 1 mmol) and the catalyst were placed under argon in the TOP INDUSTRIE parallel hydrogenation system. The autoclave was pressurized to an initial pressure of 10 bar of hydrogen and the reaction was allowed to proceed at 50 °C for 2 h. The crude reaction mixture was purified by silica gel chromatography (cyclohexane-EtOAc, 50:50) to afford 163 mg of (R )-6 as a white solid (91%). Mp 125-126 °C; [α]D +43 (c 1, CHCl3 ); [α]D +29 (c 1, CH3 OH). IR (KBr disk): 3331 (νOH-NH ), 3111 (νCH3 ), 1645 (νCO ) cm-1 . 1 H NMR (300 MHz, CDCl3 ): δ = 2.50-2.59 (m, 2 H), 2.84 (d, J = 4.8 Hz, 3 H), 4.18 (br, 1 H), 5.09-5.16 (dd, J = 5.0, 7.6 Hz, 1 H), 5.83 (br, 1 H), 7.31-7.39 (m, 5 H). 13 C NMR (CDCl3 ): δ = 26.0, 44.4, 70.7, 125.4, 142.9, 152.4, 172.4. MS (70 eV): m/z (%) = 179 (21) [M+ ], 73 (100), 105 (26), 58 (24), 43 (25).