Abstract
A liquid-phase traceless route to 3,5-disubstituted-1,2,4-triazoles has been developed, which allows for the incorporation of two elements of diversity. The heterocycle was constructed upon PEG6000 (soluble polymer) modified by 4-hydroxy-2-methoxybenzaldehyde, from which a traceless cleavage could be realized with TFA-CH2 Cl2 . This method provided a library of 3,5-disubstituted-1,2,4-triazoles with high yields and purity.
Key words
soluble polymer - 1,2,4-triazoles - Lawesson’s reagent - cyclization reaction - traceless cleavage
References
1a
Fruchtel JS.
Jung G.
Angew. Chem., Int. Ed. Engl.
1996,
35:
17
1b
Lorsbach BA.
Kurth MJ.
Chem. Rev.
1999,
99:
1549
1c
Dolle RE.
J. Comb. Chem.
2003,
5:
693
2a
Gravert DJ.
Janda KD.
Chem. Rev.
1997,
97:
489
2b
Wentworth P.
Janda KD.
Chem. Commun.
1999,
1917
2c
Toy PH.
Janda KD.
Acc. Chem. Res.
2000,
33:
546
3a
Li Z.
Wang JK.
Wang XC.
Synth. Commun.
2003,
33:
3567
3b
Wang XC.
Wang JK.
Li Z.
Chin. Chem. Lett.
2004,
15:
635
3c
Wang JK.
Zong YX.
An HG.
Xue GQ.
Wu DQ.
Wang YS.
Tetrahedron Lett.
2005,
46:
3797
3d
Wang JK.
Zong YX.
Yue GR.
Synlett
2005,
1135
3e
Wang JK.
Zong YX.
Yue GR.
An HG.
Wang XC.
J. Chem. Res., Synop.
2005,
335
4a
Zhao X.
Metz WA.
Sieber F.
Janda KD.
Tetrahedron Lett.
1998,
39:
8433
4b
Blettner CG.
Konig WA.
Quhter G.
Stenzel W.
Schotten T.
Synlett
1999,
307
4c
Racker R.
Doring K.
Reiser O.
J. Org. Chem.
2000,
65:
6932
4d
Luisa G.
Giorgio M.
Pietro C.
J. Chem. Soc., Perkin Trans. 1
2002,
2504
5a
Chen C.
Dagnino R.
Huang CQ.
McCarthy JR.
Grigoriadis DE.
Bioorg. Med. Chem. Lett.
2001,
11:
3165
5b
Jenkins SM.
Wadsworth HJ.
Bromidge S.
Orlek BS.
Wyman PA.
Riley GJ.
Hawkins J.
J. Med. Chem.
1992,
35:
2392
6a
Burrell G.
Evans JM.
Hadley MS.
Hicks F.
Stemp G.
Bioorg. Med. Chem. Lett.
1994,
4:
1285
6b
Tully WR.
Gardner CR.
Gillepsie RJ.
Westwood R.
J. Med. Chem.
1991,
34:
2060
7
Duncia JV.
Santela JB.
Higley A.
VanAtten MK.
Weber PC.
Alexander RS.
Kettner CA.
Pruitt JR.
Liauw AY.
Quan ML.
Knabb RM.
Wexler RR.
Bioorg. Med. Chem. Lett.
1998,
8:
775
8
Samanta SK.
Yli-Kauhaluoma J.
J. Comb. Chem.
2005,
7:
142
9
Brunn E.
Funke E.
Gotthardt H.
Huisgen R.
Chem. Ber.
1971,
104:
1562
10
Hitostuyanagi Y.
Motegi S.
Fukaya H.
Takeya K.
J. Org. Chem.
2002,
67:
3266
11
Boeglin D.
Cantel S.
Heitz A.
Martinez J.
Fehrentz J.-A.
Org. Lett.
2003,
5:
4465
12
Harju K.
Vahermo M.
Mutikainen I.
Yli-Kauhaluoma J.
J. Comb. Chem.
2003,
5:
826
13
Pietta PG.
Cavallo PF.
Takahashi K.
Marshall GR.
J. Org. Chem.
1974,
39:
44
14a
Clausen K.
Thorsen M.
Lawesson SO.
Tetrahedron
1981,
37:
3635
14b
Majer Z.
Zewdu M.
Hollosi M.
Seprodi J.
Vadasz Z.
Teplan I.
Biochem. Biophys. Res. Commun.
1988,
150:
1017
14c
Pons JF.
Mishir Q.
Nouvet A.
Brookfield F.
Tetrahedron Lett.
2000,
41:
4965
15 All the compounds were characterized and their structures were confirmed by spectrometric methods (1 H NMR, IR and MS) and elemental analysis. For compound 8e : 1 H NMR (400 MHz, DMSO-d
6 ): δ = 3.86 (6 H, s), 7.04-7.06 (4 H, m), 7.93-7.96 (4 H, m). IR: 1575, 1680, 2866, 3148 cm-1 . MS (EI): m /z = 281 [M+ ]. Anal. Calcd for C16 H15 N3 O2 : C, 68.31; H, 5.37; N, 14.94. Found: C, 68.39; H, 5.31; N, 14.90. For compound 8i : 1 H NMR (400 MHz, DMSO-d
6 ): δ = 3.86 (3 H, s), 7.03-7.08 (2 H, m), 7.44-7.52 (2 H, m), 7.57-7.79 (4 H, m). IR: 1570, 1694, 2891, 3133 cm-1 . MS (EI): m /z = 285 [M+ ]. Anal. Calcd for C15 H12 ClN3 O: C, 63.05; H, 4.23; N, 14.71. Found: C, 63.17; H, 4.24; N, 14.68.