Z Orthop Ihre Grenzgeb 2005; 143(6): 684-690
DOI: 10.1055/s-2005-918186
Grundlagenforschung

© Georg Thieme Verlag Stuttgart · New York

Osteoblastäre Differenzierung von humanen adulten mesenchymalen Stammzellen durch transgenes BMP-2 in Abwesenheit von Dexamethason

Osteoblastic Differentiation of Human Adult Mesenchymal Stem Cells After Ad-BMP-2 in the Absence of DexamethasoneH. Koch1 , J. A. Jadlowiec2 , 3 , J. D. Whalen4 , P. Robbins5 , C. Lattermann6 , F. H. Fu6 , H. R. Merk1 , J. O. Hollinger2
  • 1Klinik für Orthopädie und orthopädische Chirurgie, Universität Greifswald
  • 2Bone Tissue Engineering Center, Carnegie Mellon University (CMU), Pittsburgh, USA
  • 3Department of Biological Sciences, CMU, Pittsburgh, USA
  • 4Shadyside Hospital, University of Pittsburgh Medical Center (UPMC), Pittsburgh, USA
  • 5Department of Molecular Genetics and Biochemistry, University of Pittsburgh, USA
  • 6Department of Orthopaedic Surgery, UPMC, Pittsburgh, USA
Further Information

Publication History

Publication Date:
28 December 2005 (online)

Zusammenfassung

Studienziel: Mesenchymale Stammzellen (MSC) verschiedener Spezies scheinen unterschiedlich auf osteogene Stimuli zu reagieren. Es wird beschrieben, dass MSC humanen Ursprungs nach Behandlung mit BMP-2 nicht osteoblastär differenzieren, sondern dass es hierzu der Wirkung von Dexamethason bedarf. In vorliegender Studie wurde die Wirkung des adenoviralen Transfers des BMP-2-Gens auf Genotyp und Phänotyp von hMSC in Abwesenheit von Dexamethason untersucht. Methode: hMSC wurden mit adenoviralen Vektoren für BMP-2 transduziert und in Abwesenheit von Dexamethason oder anderen osteogenen Supplementen in Kultur gehalten. Änderungen in der Expression von Knochenmarkergenen Runx2, Osterix und Typ-I-Kollagen wurden mittels quantitativer PCR bestimmt. Als phänotypischer Marker wurde die alkalische Phosphataseaktivität untersucht. Die statistische Auswertung erfolgte mittels Varianzanalyse und Post-hoc-Tests (p < 0,05). Ergebnisse: Der adenovirale Transfer des BMP-2-Gens in hMSC und die nachfolgende Produktion von transgenem BMP-2 führte ohne Zugabe osteogener Supplemente zu einem Expressionsanstieg der genotypischen Marker und zu einer Zunahme der alkalischen Phosphataseaktivität als Ausdruck osteoblastärer Differenzierung. Schlussfolgerung: Unsere Beobachtungen sind bemerkenswert als möglicher Hinweis auf eine Überlegenheit transgener, endogen produzierter Proteine gegenüber exogen zugeführten rekombinanten Proteinen.

Abstract

Aim: Mesenchymal stem cells (MSC) of various species appear to require different cues to differentiate towards the osteoblastic lineage. For MSC of human origin, recombinant hBMP-2 is reported to be not sufficient but dexamethasone seems to be essential. The aim of this study was to analyse changes in genotype and phenotype of hMSC after adenoviral transfer of the BMP-2 gene in the absence of dexamethasone. Methods: We employed hMSC and analysed changes in expression of the Runx2, Osterix and type I collagen gene by quantitative PCR after adenoviral transfer of the human BMP-2 gene in the absence of dexamethasone. As a phenotypic marker alkaline phosphatase activity was assessed. ANOVA and post hoc statistical analyses were used to determine differences among data (p < 0.05). Results: Transfer of the hBMP-2 gene and consecutive production of transgenic BMP-2 up-regulated bone marker gene expression and increased alkaline phosphatase activity and thus promoted an enhanced lineage progression to the osteoblast phenotype without the addition of dexamethasone. Conclusion: These findings are noteworthy in the light of a possible superiority of endogenous transgenic proteins compared to exogenous recombinant proteins.

Literatur

  • 1 Osyczka A M, Leboy P S. Bone morphogenetic protein regulation of early osteoblast genes in human marrow stromal cells is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling.  Endocrinology. 2005;  146 3428-3437
  • 2 Friedenstein A J, Gorskaja J F, Kulagina N N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs.  Exp Hematol. 1976;  4 267-274
  • 3 Pittenger M F, Mackay A M, Beck S C, Jaiswal R K, Douglas R, Mosca J D, Moorman M A, Simonetti D W, Craig S, Marshak D R. Multilineage potential of adult human mesenchymal stem cells.  Science. 1999;  284 143-147
  • 4 Prockop D J. Marrow stromal cells as stem cells for nonhematopoietic tissues.  Science. 1997;  276 71-74
  • 5 Jager M, Wild A, Fuss M, Werner A, Krauspe R. [Advantages of biomatrices in chondrogenesis of pluripotent mesenchymal stem].  Z Orthop Ihre Grenzgeb. 2002;  140 681-689
  • 6 Koch H, Jadlowiec J A, Fu F H, Nonn J, Merk H R, Hollinger J O, Campbell P G. [The effect of growth/differentiation factor-5 (GDF-5) on genotype and phenotype in human adult mesenchymal stem cells].  Z Orthop Ihre Grenzgeb. 2004;  142 248-253
  • 7 Niemeyer P, Krause U, Punzel M, Fellenberg J, Simank H G. [Mesenchymal stem cells for tissue engineering of bone: 3D-cultivation and osteogenic differentiation on mineralized collagen].  Z Orthop Ihre Grenzgeb. 2003;  141 712-717
  • 8 Shin M, Yoshimoto H, Vacanti J P. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold.  Tissue Eng. 2004;  10 33-41
  • 9 Owen T A, Aronow M, Shalhoub V, Barone L M, Wilming L, Tassinari M S, Kennedy M B, Pockwinse S, Lian J B, Stein G S. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix.  J Cell Physiol. 1990;  143 420-430
  • 10 Wozney J M, Rosen V, Celeste A J, Mitsock L M, Whitters M J, Kriz R W, Hewick R M, Wang E A. Novel regulators of bone formation: molecular clones and activities.  Science. 1988;  242 1528-1534
  • 11 Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance.  Science. 2000;  289 1501-1504
  • 12 Anderson H C, Sipe J B, Hessle L, Dhanyamraju R, Atti E, Camacho N P, Millan J L. Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice.  Am J Pathol. 2004;  164 841-847
  • 13 Baltzer A W, Whalen J D, Stefanovic-Racic M, Ziran B, Robbins P D, Evans C H. Adenoviral transduction of human osteoblastic cell cultures: a new perspective for gene therapy of bone diseases.  Acta Orthop Scand. 1999;  70 419-424
  • 14 Osyczka A M, Diefenderfer D L, Bhargave G, Leboy P S. Different effects of BMP-2 on marrow stromal cells from human and rat bone.  Cells Tissues Organs. 2004;  176 109-119
  • 15 Jorgensen N R, Henriksen Z, Sorensen O H, Civitelli R. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts.  Steroids. 2004;  69 219-226
  • 16 Urist M R. Bone: formation by autoinduction.  Science. 1965;  150 893-899
  • 17 Schmitt J M, Hwang K, Winn S R, Hollinger J O. Bone morphogenetic proteins: an update on basic biology and clinical relevance.  J Orthop Res. 1999;  17 269-278
  • 18 Hartwig C H, Esenwein S A, Pfund A, Kusswetter Dagger W, Herr G. [Improved osseointegration of titanium implants of different surface characteristics by the use of bone morphogenetic protein (BMP-3): an animal study performed at the metaphyseal bone bed in dogs].  Z Orthop Ihre Grenzgeb. 2003;  141 705-711
  • 19 Kessler S, Mayr-Wohlfart U, Ignatius A, Puhl W, Claes L, Gunther K P. [The impact of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) on osseointegration, degradation and biomechanical properties of a synthetic bone substitute].  Z Orthop Ihre Grenzgeb. 2003;  141 472-480
  • 20 Siebert C H, Miltner O, Schneider U, Weber M, Wahner T, Niedhart C. [Filling of osteochondral donor site defects. Experimental study with tricalcium phosphate cement and BMP-2].  Z Orthop Ihre Grenzgeb. 2003;  141 227-232
  • 21 Baltzer A W, Liebau C. [Bone morphogenetic proteins - significance for biological bone healing].  Z Orthop Ihre Grenzgeb. 1999;  137 9-10
  • 22 Boden S D. Clinical application of the BMPs.  J Bone Joint Surg [Am]. 2001;  83 (Suppl 1 Pt 2) S161
  • 23 Govender S, Csimma C, Genant H K, Valentin-Opran A, Amit Y, Arbel R, Aro H, Atar D, Bishay M, Borner M G, Chiron P, Choong P, Cinats J, Courtenay B, Feibel R, Geulette B, Gravel C, Haas N, Raschke M, Hammacher E, van der Velde D, Hardy P, Holt M, Josten C, Ketterl R L, Lindeque B, Lob G, Mathevon H, McCoy G, Marsh D, Miller R, Munting E, Oevre S, Nordsletten L, Patel A, Pohl A, Rennie W, Reynders P, Rommens P M, Rondia J, Rossouw W C, Daneel P J, Ruff S, Ruter A, Santavirta S, Schildhauer T A, Gekle C, Schnettler R, Segal D, Seiler H, Snowdowne R B, Stapert J, Taglang G, Verdonk R, Vogels L, Weckbach A, Wentzensen A, Wisniewski T. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients.  J Bone Joint Surg [Am]. 2002;  84 2123-2134
  • 24 Diefenderfer D L, Osyczka A M, Reilly G C, Leboy P S. BMP responsiveness in human mesenchymal stem cells.  Connect Tissue Res. 2003;  4 (Suppl 1) 305-311
  • 25 Chen T L. Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment.  Bone. 2004;  35 83-95
  • 26 Jadlowiec J, Koch H, Zhang X, Campbell P G, Seyedain M, Sfeir C. Phosphophoryn regulates the gene expression and differentiation of NIH3T3, MC3T3-E1, and human mesenchymal stem cells via the integrin/MAPK signaling pathway.  J Biol Chem. 2004;  279 53323-53330
  • 27 Evans C H, Ghivizzani S C, Robbins P D. Orthopaedic gene therapy.  Clin Orthop. 2004;  429 316-329
  • 28 Niyibizi C, Baltzer A, Lattermann C, Oyama M, Whalen J D, Robbins P D, Evans C H. Potential role for gene therapy in the enhancement of fracture healing.  Clin Orthop. 1998;  355 (Suppl) S148-S153
  • 29 Partridge K, Yang X, Clarke N M, Okubo Y, Bessho K, Sebald W, Howdle S M, Shakesheff K M, Oreffo R O. Adenoviral BMP-2 gene transfer in mesenchymal stem cells: in vitro and in vivo bone formation on biodegradable polymer scaffolds.  Biochem Biophys Res Commun. 2002;  292 144-152
  • 30 Turgeman G, Pittman D D, Muller R, Kurkalli B G, Zhou S, Pelled G, Peyser A, Zilberman Y, Moutsatsos I K, Gazit D. Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy.  J Gene Med. 2001;  3 240-251
  • 31 Robbins P D, Ghivizzani S C. Viral vectors for gene therapy.  Pharmacol Ther. 1998;  80 35-47
  • 32 AppliedBiosystems .User Bulletin #2: ABI Prism 7700 Sequence Detection System: Applied Biosystems,. Foster City, CA; updated 10/2001
  • 33 Koch H, Jadlowiec J, Whalen J, Lattermann C, Robbins P, Fu F H, Merk H R, Hollinger J O. [Refined Adenoviral Transduction for Controlled Gene Transfer into Human Adult Mesenchymal Stem Cells].  Z Orthop Ihre Grenzgeb. 2005;  im Druck
  • 34 Bruder S P, Jaiswal N, Haynesworth S E. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation.  J Cell Biochem. 1997;  64 278-294
  • 35 Jaiswal N, Haynesworth S E, Caplan A I, Bruder S P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro.  J Cell Biochem. 1997;  64 295-312
  • 36 Lian J B, Shalhoub V, Aslam F, Frenkel B, Green J, Hamrah M, Stein G S, Stein J L. Species-specific glucocorticoid and 1,25-dihydroxyvitamin D responsiveness in mouse MC3T3-E1 osteoblasts: dexamethasone inhibits osteoblast differentiation and vitamin D down-regulates osteocalcin gene expression.  Endocrinology. 1997;  138 2117-2127
  • 37 Abe E, Yamamoto M, Taguchi Y, Lecka-Czernik B, O'Brien C A, Economides A N, Stahl N, Jilka R L, Manolagas S C. Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin.  J Bone Miner Res. 2000;  15 663-673
  • 38 Ducy P, Zhang R, Geoffroy V, Ridall A L, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation.  Cell. 1997;  89 747-754
  • 39 Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development.  Genes Dev. 1999;  13 1025-1036
  • 40 Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng J M, Behringer R R, de Crombrugghe B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation.  Cell. 2002;  108 17-29
  • 41 Centrella M, Horowitz M C, Wozney J M, McCarthy T L. Transforming growth factor-beta gene family members and bone.  Endocr Rev. 1994;  15 27-39
  • 42 Rodan G A. Introduction to bone biology.  Bone. 1992;  13 (Suppl 1) S3-S6
  • 43 Koch H, Jadlowiec J, Campbell P G. Adenoviral-delivered IGF-I induces early commitment to osteogenic lineage in primary human adult mesenchymal stem cells.  Stem Cells Dev. 2005;  im Druck
  • 44 Evans C H, Robbins P D. Possible orthopaedic applications of gene therapy.  J Bone Joint Surg [Am]. 1995;  77 1103-1114
  • 45 Lehrman S. Virus treatment questioned after gene therapy death.  Nature. 1999;  401 517-518
  • 46 Kaiser J. Gene therapy. Seeking the cause of induced leukemias in X-SCID trial.  Science. 2003;  299 495

OA Dr. med. H. Koch

Klinik für Orthopädie und orthopädische Chirurgie der Ernst-Moritz-Arndt-Universität

Sauerbruchstraße

17475 Greifswald

Phone: 0 38 34/86 72 27

Fax: 0 38 34/86 72 22

Email: hannjoerg.koch@uni-greifswald.de