Abstract
The asymmetric synthesis of 1,3-dihydroxy-2-ketones bearing two quaternary stereocenters in α- and α′-position starting from 2,2-dimethyl-1,3-dioxan-5-one-SAMP-hydrazone is described. The protocol involves four consecutive α/α′-alkylations, the last one being carried out in the presence of DMPU as additive. After acidic cleavage of both the chiral auxiliary and the acetal function in a two-phase system, the title compounds are obtained with high stereoselectivity (de ≥ 91-97%, ee ≥ 96%) and in moderate to very good overall yields (14-61%). In addition, 1,2-quaternary 1,3-protected 1,2,3-triols were obtained by nucleophilic 1,2-addition to the carbonyl group as single stereoisomeres (de, ee ≥ 96%) in excellent yields.
Key words
asymmetric synthesis - quaternary stereocenters - α-alkylation - SAMP/RAMP-hydrazones - 1,2-addition
References
1
Lear MJ.
Hirama M.
Tetrahedron Lett.
1999,
40:
4897
2
Mulzer J.
Angew. Chem., Int. Ed. Engl.
1991,
30:
1452 ; Angew. Chem. 1991, 103, 1484
3
Hatakeyama S.
Sugawara K.
Tankano S.
Tetrahedron Lett.
1991,
32:
4513
4
Hayakawa Y.
Kim JW.
Adachi H.
Shinya K.
Fujita K.
Seto H.
J. Am. Chem. Soc.
1998,
120:
3524
5
Searle PA.
Molinski TF.
J. Org. Chem.
1995,
60:
4296
6a
Beauhaire J.
Ducrot P.-H.
Malosse C.
Rochat D.
Tetrahedron Lett.
1995,
36:
1043
6b
Beauhaire J.
Ducrot P.-H.
Bioorg. Med. Chem.
1996,
4:
413
6c
Ducrot P.-H.
Synth. Commun.
1996,
21:
3923
6d
Oehlschlager AC.
Ndiege IO.
Jayaraman S.
Gonzalez L.
Alpizar D.
Fallas M.
Naturwissenschaften
1996,
83:
280
6e
Kitching W.
Fletcher MT.
Moore CJ.
Tetrahedron Lett.
1997,
38:
3475
6f
Wardrop DJ.
Tetrahedron: Asymmetry
2003,
14:
929
6g
Enders D.
Breuer I.
Nühring A.
Eur. J. Org. Chem.
2005,
2677
7
Jew S.
Lim D.-Y.
Kim J.-Y.
Kim S.
Roh E.
Yi H.-J.
Ku J.-M.
Park B.
Jeong B.
Park H.
Tetrahedron: Asymmetry
2002,
13:
15
8a
Stampoulis P.
Tezuka Y.
Banskota AH.
Tran KQ.
Saiki I.
Kadota S.
Tetrahedron Lett.
1999,
40:
4239
8b
Stampoulis P.
Tezuka Y.
Banskota AH.
Tran KQ.
Saiki I.
Kadota S.
Chem. Pharm. Bull.
2000,
48:
1711
9
Kuramoto M.
Tsukihara T.
Ono N.
Chem. Lett.
1999,
1113
10a
Lane JF.
Koch WT.
Leeds NS.
Gorin G.
J. Am. Chem. Soc.
1952,
74:
3211
10b
Schmidt TJ.
Schmidt HM.
Müller E.
Peters W.
Fronczek FR.
Truesdale A.
Fischer NH.
J. Nat. Prod.
1998,
61:
230
10c
Schmidt TJ.
Okuyama E.
Fronczek FR.
Bioorg. Med. Chem.
1999,
7:
2857
11a
Sakabe N.
Goto T.
Hirata Y.
Tetrahedron
1977,
33:
3077
11b
Shizuri Y.
Nishiyama S.
Imai D.
Yamamura S.
Tetrahedron Lett.
1984,
42:
4771
11c
Hanaki N.
Link JT.
MacMillan DWC.
Overman LE.
Trankle WG.
Wurster JA.
Org. Lett.
2000,
2:
223
12
Martin SF.
Tetrahedron
1980,
36:
419
13
Fuji K.
Chem. Rev.
1993,
93:
2037
14
Corey EJ.
Guzman-Perez A.
Angew. Chem. Int. Ed.
1998,
37:
388 ; Angew. Chem. 1998, 110, 402
15a
Christoffers J.
Mann A.
Angew. Chem. Int. Ed.
2001,
40:
4591 ; Angew. Chem. 2001, 113, 4725
15b
Christoffers J.
Baro A.
Angew. Chem. Int. Ed.
2003,
42:
1688 ; Angew. Chem. 2003, 115, 1726
16a
Douglas CJ.
Overman LE.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5363
16b
Peterson EA.
Overman LE.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
11943
17
Ramón DJ.
Yus M.
Curr. Org. Chem.
2004,
8:
149
18a
Weber B.
Seebach D.
Angew. Chem., Int. Ed. Engl.
1992,
31:
84 ; Angew. Chem. 1992, 104, 96
18b
Weber B.
Seebach D.
Tetrahedron
1994,
50:
6117
18c
Bartoli G.
Bosco M.
Di Martino E.
Marcantoni E.
Sambri L.
Eur. J. Org. Chem.
2001,
2901
19a
Brandes BD.
Sharpless KB.
J. Org. Chem.
1994,
59:
4378
19b
Vander Velde SL.
Jacobsen EN.
J. Org. Chem.
1995,
60:
5380
20a
Morikawa K.
Park J.
Andersson PG.
Hashiyama T.
Sharpless KB.
J. Am. Chem. Soc.
1993,
115:
8463
20b
Becker H.
Sharpless KB.
Angew. Chem., Int. Ed. Engl.
1996,
35:
448 ; Angew. Chem. 1996, 108, 447
20c
Kolb HC.
Van Nieuwenhze MS.
Sharpless KB.
Chem. Rev.
1994,
94:
2483
21a
Vorbrüggen H.
Acta Chem. Scand.
1982,
420
21b
Bockstiegel B.
PhD Thesis
RWTH Aachen University;
Germany:
1989.
21c
Hoppe D.
Schmincke H.
Kleemann H.-W.
Tetrahedron
1989,
45:
687
21d
Frobes DC.
Ene DG.
Doyle MP.
Synthesis
1998,
879
21e Review: Enders D.
Voith M.
Lenzen A.
Angew. Chem. Int. Ed.
2005,
44:
1304 ; Angew. Chem. 2005, 117, 1330
22a
Enders D. In
Asymmetric Synthesis
Vol. 3B:
Morrison JD.
Academic Press;
Orlando:
1984.
p.275
22b
Enders D.
Klatt M. In
Encyclopedia of Reagents for Organic Synthesis
Paquette LA.
Wiley;
New York:
1995.
p.3368
22c Recent review: Enders D.
Job A.
Janeck CF.
Bettray W.
Peters R.
Tetrahedron
2002,
58:
2253
23
Enders D.
Nühring A.
Runsink J.
Raabe G.
Synthesis
2001,
1406
For previous asymmetric syntheses based on 1 see:
24a
Enders D.
Bockstiegel B.
Synthesis
1989,
493
24b
Enders D.
Jegelka U.
Tetrahedron Lett.
1993,
34:
2453
24c
Enders D.
Bockstiegel B.
Gatzweiler W.
Jegelka U.
Dücker B.
Wortmann L.
Chim. Oggi
1997,
15:
20
24d
Enders D.
Hundertmark T.
Lampe C.
Jegelka U.
Scharfbillig I.
Eur. J. Org. Chem.
1998,
2839
24e
Enders D.
Hundertmark T.
Eur. J. Org. Chem.
1999,
751
24f
Enders D.
Hundertmark T.
Tetrahedron Lett.
1999,
40:
4169
24g
Enders D.
Voith M.
Synlett
2002,
29
24h
Enders D.
Voith M.
Ince SJ.
Synthesis
2002,
1775
24i
Enders D.
Lenzen A.
Synlett
2003,
2185
24j
Enders D.
Haas M.
Synlett
2003,
2182
24k
Enders D.
Müller-Hüwen A.
Eur. J. Org. Chem.
2004,
1732
24l
Enders D.
Lenzen A.
Müller M.
Synthesis
2004,
1486
25
Enders D.
Eichenauer H.
Chem. Ber.
1979,
112:
2933
26
Enders D.
Wortmann L.
Peters R.
Acc. Chem. Res.
2000,
33:
157
27 X-ray Crystallographic Study of 4c: The compound crystallizes in orthorhombic space group P212121 (Nr. 19) (C14H20O3, Mr = 236.31). The cell dimensions are a = 9.165 (7), b = 9.700(2), and c = 15.365 (4) Å. A cell volume of V = 1366.0(11) Å3 and Z = 4 result in a calculated density of ρcalcd = 1.149 gcm-3. 3164 reflections were collected in the ω/2θ mode at T = 150K on an Enraf-Nonius CAD4 diffractometer employing graphite-monochromated CuKα-radiation (λ = 1.54179 Å). Data collection covered the range -11 ≤ h ≤ 11, -11 ≤ k ≤ 11, and -18 ≤ l ≤ 18 (Friedel pairs) up to Θ
max
= 72.11°. µ = 0.639 mm-1, with no absorption correction. The structure was solved by direct methods as implemented in the Xtal3.7 suite of crystallographic routines
[31]
where GENSIN was used to generate the structure-invariant relationships and GENTAN for the general tangent phasing procedure. 2589 observed reflections [I > 2σ (I)] were included in the final full-matrix least-squares refinement on F involving 162 parameters and converging at R(w) = 0.072 (0.74, w = 1/[20.0 σ2 (
F)], S = 1.927, and a residual electron density of -0.41/0.31e Å-3. Due to a large standard deviation the result of an attempted determination of the absolute configuration using Flack’s method
[32]
turned out to be insignificant. However, based on chemical evidence the chirality of the molecule could be assigned as shown in Figure
[1]
. The hydroxyl hydrogen atoms could be located and have been refined isotropically. Most of the other hydrogen positions have been calculated in idealized positions, and their Us have been fixed at 1.5 times U of the relevant heavy atom without refinement of any parameters. The crystal structure of 4c has been deposited as supplementary publication no. CCDC 268224 at the Cambridge Crystallographic Data Centre. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk, or http//www.ccdc.cam.ac.uk).
28
Jegelka U.
PhD Thesis
RWTH Aachen University;
Germany:
1992.
29a
Imamoto T.
Sugiura Y.
Takiyama N.
Tetrahedron Lett.
1984,
25:
4233
29b
Imamoto T.
Takiyama N.
Nakamura N.
Tetrahedron Lett.
1985,
26:
4763
30
Enders D.
Fey P.
Kipphardt H.
Org. Synth.
1987,
65:
173-183
31
Xtal3.7 System
Hall SR.
du Boulay DJ.
Olthof-Hazekamp R.
University of Western Australia;
Australia:
2000.
32
Flack HD.
Acta Crystallogr., Sect. A: Fundam. Crystallogr.
1983,
39:
876