Subscribe to RSS
DOI: 10.1055/s-2005-918425
Asymmetric Synthesis of 2-Keto-1,3-diols and Protected 1,2,3-Triols Bearing Two Quaternary Stereocenters
Publication History
Publication Date:
12 October 2005 (online)
Abstract
The asymmetric synthesis of 1,3-dihydroxy-2-ketones bearing two quaternary stereocenters in α- and α′-position starting from 2,2-dimethyl-1,3-dioxan-5-one-SAMP-hydrazone is described. The protocol involves four consecutive α/α′-alkylations, the last one being carried out in the presence of DMPU as additive. After acidic cleavage of both the chiral auxiliary and the acetal function in a two-phase system, the title compounds are obtained with high stereoselectivity (de ≥ 91-97%, ee ≥ 96%) and in moderate to very good overall yields (14-61%). In addition, 1,2-quaternary 1,3-protected 1,2,3-triols were obtained by nucleophilic 1,2-addition to the carbonyl group as single stereoisomeres (de, ee ≥ 96%) in excellent yields.
Key words
asymmetric synthesis - quaternary stereocenters - α-alkylation - SAMP/RAMP-hydrazones - 1,2-addition
- 1
Lear MJ.Hirama M. Tetrahedron Lett. 1999, 40: 4897 - 2
Mulzer J. Angew. Chem., Int. Ed. Engl. 1991, 30: 1452 ; Angew. Chem. 1991, 103, 1484 - 3
Hatakeyama S.Sugawara K.Tankano S. Tetrahedron Lett. 1991, 32: 4513 - 4
Hayakawa Y.Kim JW.Adachi H.Shinya K.Fujita K.Seto H. J. Am. Chem. Soc. 1998, 120: 3524 - 5
Searle PA.Molinski TF. J. Org. Chem. 1995, 60: 4296 -
6a
Beauhaire J.Ducrot P.-H.Malosse C.Rochat D. Tetrahedron Lett. 1995, 36: 1043 -
6b
Beauhaire J.Ducrot P.-H. Bioorg. Med. Chem. 1996, 4: 413 -
6c
Ducrot P.-H. Synth. Commun. 1996, 21: 3923 -
6d
Oehlschlager AC.Ndiege IO.Jayaraman S.Gonzalez L.Alpizar D.Fallas M. Naturwissenschaften 1996, 83: 280 -
6e
Kitching W.Fletcher MT.Moore CJ. Tetrahedron Lett. 1997, 38: 3475 -
6f
Wardrop DJ. Tetrahedron: Asymmetry 2003, 14: 929 -
6g
Enders D.Breuer I.Nühring A. Eur. J. Org. Chem. 2005, 2677 - 7
Jew S.Lim D.-Y.Kim J.-Y.Kim S.Roh E.Yi H.-J.Ku J.-M.Park B.Jeong B.Park H. Tetrahedron: Asymmetry 2002, 13: 15 -
8a
Stampoulis P.Tezuka Y.Banskota AH.Tran KQ.Saiki I.Kadota S. Tetrahedron Lett. 1999, 40: 4239 -
8b
Stampoulis P.Tezuka Y.Banskota AH.Tran KQ.Saiki I.Kadota S. Chem. Pharm. Bull. 2000, 48: 1711 - 9
Kuramoto M.Tsukihara T.Ono N. Chem. Lett. 1999, 1113 -
10a
Lane JF.Koch WT.Leeds NS.Gorin G. J. Am. Chem. Soc. 1952, 74: 3211 -
10b
Schmidt TJ.Schmidt HM.Müller E.Peters W.Fronczek FR.Truesdale A.Fischer NH. J. Nat. Prod. 1998, 61: 230 -
10c
Schmidt TJ.Okuyama E.Fronczek FR. Bioorg. Med. Chem. 1999, 7: 2857 -
11a
Sakabe N.Goto T.Hirata Y. Tetrahedron 1977, 33: 3077 -
11b
Shizuri Y.Nishiyama S.Imai D.Yamamura S. Tetrahedron Lett. 1984, 42: 4771 -
11c
Hanaki N.Link JT.MacMillan DWC.Overman LE.Trankle WG.Wurster JA. Org. Lett. 2000, 2: 223 - 12
Martin SF. Tetrahedron 1980, 36: 419 - 13
Fuji K. Chem. Rev. 1993, 93: 2037 - 14
Corey EJ.Guzman-Perez A. Angew. Chem. Int. Ed. 1998, 37: 388 ; Angew. Chem. 1998, 110, 402 -
15a
Christoffers J.Mann A. Angew. Chem. Int. Ed. 2001, 40: 4591 ; Angew. Chem. 2001, 113, 4725 -
15b
Christoffers J.Baro A. Angew. Chem. Int. Ed. 2003, 42: 1688 ; Angew. Chem. 2003, 115, 1726 -
16a
Douglas CJ.Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5363 -
16b
Peterson EA.Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 11943 - 17
Ramón DJ.Yus M. Curr. Org. Chem. 2004, 8: 149 -
18a
Weber B.Seebach D. Angew. Chem., Int. Ed. Engl. 1992, 31: 84 ; Angew. Chem. 1992, 104, 96 -
18b
Weber B.Seebach D. Tetrahedron 1994, 50: 6117 -
18c
Bartoli G.Bosco M.Di Martino E.Marcantoni E.Sambri L. Eur. J. Org. Chem. 2001, 2901 -
19a
Brandes BD.Sharpless KB. J. Org. Chem. 1994, 59: 4378 -
19b
Vander Velde SL.Jacobsen EN. J. Org. Chem. 1995, 60: 5380 -
20a
Morikawa K.Park J.Andersson PG.Hashiyama T.Sharpless KB. J. Am. Chem. Soc. 1993, 115: 8463 -
20b
Becker H.Sharpless KB. Angew. Chem., Int. Ed. Engl. 1996, 35: 448 ; Angew. Chem. 1996, 108, 447 -
20c
Kolb HC.Van Nieuwenhze MS.Sharpless KB. Chem. Rev. 1994, 94: 2483 -
21a
Vorbrüggen H. Acta Chem. Scand. 1982, 420 -
21b
Bockstiegel B. PhD Thesis RWTH Aachen University; Germany: 1989. -
21c
Hoppe D.Schmincke H.Kleemann H.-W. Tetrahedron 1989, 45: 687 -
21d
Frobes DC.Ene DG.Doyle MP. Synthesis 1998, 879 -
21e Review:
Enders D.Voith M.Lenzen A. Angew. Chem. Int. Ed. 2005, 44: 1304 ; Angew. Chem. 2005, 117, 1330 -
22a
Enders D. In Asymmetric Synthesis Vol. 3B:Morrison JD. Academic Press; Orlando: 1984. p.275 -
22b
Enders D.Klatt M. In Encyclopedia of Reagents for Organic SynthesisPaquette LA. Wiley; New York: 1995. p.3368 -
22c Recent review:
Enders D.Job A.Janeck CF.Bettray W.Peters R. Tetrahedron 2002, 58: 2253 - 23
Enders D.Nühring A.Runsink J.Raabe G. Synthesis 2001, 1406 - For previous asymmetric syntheses based on 1 see:
-
24a
Enders D.Bockstiegel B. Synthesis 1989, 493 -
24b
Enders D.Jegelka U. Tetrahedron Lett. 1993, 34: 2453 -
24c
Enders D.Bockstiegel B.Gatzweiler W.Jegelka U.Dücker B.Wortmann L. Chim. Oggi 1997, 15: 20 -
24d
Enders D.Hundertmark T.Lampe C.Jegelka U.Scharfbillig I. Eur. J. Org. Chem. 1998, 2839 -
24e
Enders D.Hundertmark T. Eur. J. Org. Chem. 1999, 751 -
24f
Enders D.Hundertmark T. Tetrahedron Lett. 1999, 40: 4169 -
24g
Enders D.Voith M. Synlett 2002, 29 -
24h
Enders D.Voith M.Ince SJ. Synthesis 2002, 1775 -
24i
Enders D.Lenzen A. Synlett 2003, 2185 -
24j
Enders D.Haas M. Synlett 2003, 2182 -
24k
Enders D.Müller-Hüwen A. Eur. J. Org. Chem. 2004, 1732 -
24l
Enders D.Lenzen A.Müller M. Synthesis 2004, 1486 - 25
Enders D.Eichenauer H. Chem. Ber. 1979, 112: 2933 - 26
Enders D.Wortmann L.Peters R. Acc. Chem. Res. 2000, 33: 157 - 28
Jegelka U. PhD Thesis RWTH Aachen University; Germany: 1992. -
29a
Imamoto T.Sugiura Y.Takiyama N. Tetrahedron Lett. 1984, 25: 4233 -
29b
Imamoto T.Takiyama N.Nakamura N. Tetrahedron Lett. 1985, 26: 4763 - 30
Enders D.Fey P.Kipphardt H. Org. Synth. 1987, 65: 173-183 - 31
Xtal3.7 System
Hall SR.du Boulay DJ.Olthof-Hazekamp R. University of Western Australia; Australia: 2000. - 32
Flack HD. Acta Crystallogr., Sect. A: Fundam. Crystallogr. 1983, 39: 876
References
X-ray Crystallographic Study of 4c: The compound crystallizes in orthorhombic space group P212121 (Nr. 19) (C14H20O3, Mr = 236.31). The cell dimensions are a = 9.165 (7), b = 9.700(2), and c = 15.365 (4) Å. A cell volume of V = 1366.0(11) Å3 and Z = 4 result in a calculated density of ρcalcd = 1.149 gcm-3. 3164 reflections were collected in the ω/2θ mode at T = 150K on an Enraf-Nonius CAD4 diffractometer employing graphite-monochromated CuKα-radiation (λ = 1.54179 Å). Data collection covered the range -11 ≤ h ≤ 11, -11 ≤ k ≤ 11, and -18 ≤ l ≤ 18 (Friedel pairs) up to Θ max = 72.11°. µ = 0.639 mm-1, with no absorption correction. The structure was solved by direct methods as implemented in the Xtal3.7 suite of crystallographic routines [31] where GENSIN was used to generate the structure-invariant relationships and GENTAN for the general tangent phasing procedure. 2589 observed reflections [I > 2σ (I)] were included in the final full-matrix least-squares refinement on F involving 162 parameters and converging at R(w) = 0.072 (0.74, w = 1/[20.0 σ2 ( F)], S = 1.927, and a residual electron density of -0.41/0.31e Å-3. Due to a large standard deviation the result of an attempted determination of the absolute configuration using Flack’s method [32] turned out to be insignificant. However, based on chemical evidence the chirality of the molecule could be assigned as shown in Figure [1] . The hydroxyl hydrogen atoms could be located and have been refined isotropically. Most of the other hydrogen positions have been calculated in idealized positions, and their Us have been fixed at 1.5 times U of the relevant heavy atom without refinement of any parameters. The crystal structure of 4c has been deposited as supplementary publication no. CCDC 268224 at the Cambridge Crystallographic Data Centre. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk, or http//www.ccdc.cam.ac.uk).