References
1
Williams DE.
Roberge M.
Van Soest R.
Andersen RJ.
J. Am. Chem. Soc.
2003,
125:
5296
2
Williams DE.
Lapawa M.
Feng X.
Tarling T.
Roberge M.
Andersen RJ.
Org. Lett.
2004,
6:
2607
3a
Le LH.
Erlichman C.
Pillon L.
Thiessen JJ.
Day A.
Wainman N.
Eisenhauer EA.
Moore MJ.
Invest. New Drugs
2004,
22:
159
3b
Honkanen RE.
Golden T.
Curr. Med. Chem.
2002,
9:
2055
For reviews on the synthesis of marine macrolides, see:
4a
Norcross RD.
Paterson I.
Chem. Rev.
1995,
95:
2041
4b
Paterson I.
Yeung K.-S.
Chem. Rev.
2005,
105:
in press
5 In addition to the originally proposed structure by Professor Andersen, as reported in ref. 1, a preliminary stereochemical assignment was made by us for the C1-C11 region.
6a
Paterson I.
Gibson KR.
Oballa RM.
Tetrahedron Lett.
1996,
37:
8585
6b
Paterson I.
Collett LA.
Tetrahedron Lett.
2001,
42:
1187
7a
Evans DA.
Coleman PJ.
Côté B.
J. Org. Chem.
1997,
62:
788
7b
Evans DA.
Côté B.
Coleman PJ.
Connell BT.
J. Am. Chem. Soc.
2003,
125:
10893
8
Cowden CJ.
Paterson I.
Organic Reactions
Vol. 51:
Paquette LA.
Wiley;
New York:
1997.
p.1-200
9a
Paterson I.
Wallace DJ.
Velazquez SM.
Tetrahedron Lett.
1994,
35:
9083
9b
Paterson I.
Wallace DJ.
Cowden CJ.
Synthesis
1998,
639
10
Crimmins MT.
Kirincich MT.
Wells SJ.
Choy AL.
Synth. Commun.
1998,
28:
3675
11 All new compounds gave spectroscopic data in agreement with the assigned structures. Compound 2 had [α]D
22 = +34.5 (c 0.80, CHCl3); 1H NMR (500 MHz, C6D6): δ = 7.78-7.83 (m, 4 H, ArH), 7.22-7.29 (m, 6 H, ArH), 5.60 (dd, J = 9.9, 2.4 Hz, 1 H, H15), 5.51 (dd, J = 9.9, 1.7 Hz, 1 H, H16), 4.38 (m, 1 H, H11), 4.22 (m, 1 H, H9), 4.07 (m, 1 H, H3), 4.03 (m, 1 H, H7), 3.94 (m, 1 H, H21eq.), 3.88 (m, 3 H, 2 × H1, H21ax.), 3.81 (m, 1 H, H13), 3.15 (m, 1 H, H20), 3.10 (s, 3 H, OMe), 2.12 (m, 1 H, H8), 2.10 (m, 1 H, H2), 2.09 (1H, m, H10), 2.04 (m, 1 H, H10), 2.02 (m, 1 H, H14), 1.97 (m, 1 H, H19ax.), 1.93 (m, 2 H, 2 × H12), 1.84 (m, 1 H, H18eq., H19eq.), 1.82 (m, 1 H, H2), 1.76 (m, 1 H, H8), 1.65 (m, 1 H, H6eq.), 1.58 (m, 1 H, H4eq.), 1.50 (m, 1 H, H18ax.), 1.49 (m, 2 H, 2 × H5), 1.36 (m, 1 H, H6ax.), 1.25 (m, 1 H, H4ax.), 1.19 (s, 9 H, Si
t
Bu), 1.05 (s, 9 H, Si
t
Bu), 1.03 (s, 9 H, Si
t
Bu), 0.80 (d, J = 7.1 Hz, 3 H, Me14), 0.26 (s, 3 H, SiMe), 0.28 (s, 3 H, SiMe), 0.24 (s, 3 H, SiMe), 0.20 (s, 3 H, SiMe); 13C NMR (125 MHz, C6D6): δ = 135.8, 135.7, 134.2, 134.1, 134.0, 129.7, 129.4, 93.0, 74.9, 71.0, 68.4, 68.3, 67.7, 67.6, 63.7, 61.5, 55.7, 46.6, 43.0, 42.5, 36.3, 34.5, 34.3, 30.8, 29.8, 27.0, 26.1, 26.0, 25.3, 19.3, 18.8, 18.2, 18.1, 17.0, -3.5, -3.7, -3.9, -4.0; HRMS (ES+): m/z [M + H]+ calcd for C51H87O7Si3: 895.5754; found: 895.5752.
12 The configuration at C13 was confirmed by 1H NMR analysis using the Kakisawa-Mosher method: Ohtani I.
Kusumi T.
Kashman Y.
Kakisawa H.
J. Am. Chem. Soc.
1991,
113:
4092
13
Corey EJ.
Fuchs PL.
Tetrahedron Lett.
1972,
13:
3769
14
Tsuji J.
Synthesis
1984,
369
15a
Smith AB.
Minbiole KP.
Verhoest PR.
Schelhaas M.
J. Am. Chem. Soc.
2001,
123:
10942
15b Dihydropyranone 12 was conveniently accessed via a Jacobsen hetero-Diels-Alder reaction between Danishefsky’s diene and TPSO(CH2)2CHO in 94% yield and 99% ee.
16
Paterson I.
Smith JD.
Ward RA.
Tetrahedron
1995,
51:
9413
17
Evans DA.
Chapman KT.
Carreira EM.
J. Am. Chem. Soc.
1988,
110:
3560
18a
Paterson I.
Anderson EA.
Dalby SM.
Loiseleur O.
Org. Lett.
2005,
7:
4121
18b
Paterson I.
Anderson EA.
Dalby SM.
Loiseleur O.
Org. Lett.
2005,
7:
4125
For other synthetic studies towards spirastrellolide, see:
19a
Liu J.
Hsung RP.
Org. Lett.
2005,
7:
2273
19b
Paterson I.
Anderson EA.
Dalby SM.
Loiseleur O.
Abstracts of Papers 229th National Meeting of the American Chemical Society, San Diego
ACS;
Washington D.C.:
2005.
ORGN-331.
19c
Wang C.
Forsyth CJ.
Abstracts of Papers 229th National Meeting of the American Chemical Society, San Diego
ACS;
Washington D.C.:
2005.
ORGN-414.