Abstract
A new methodology for the synthesis of N -arylpiperazines was developed using a poly(ethylene glycol)-derived solid support. The reactions proceeded in up to 60% overall yield over four steps. The scope and limitations of the method are discussed, as well as the utility of 13 C gel-phase NMR spectroscopy for reaction monitoring.
Key words
N -arylpiperazines - solid-phase synthesis - heterocycles - cleavage -
13 C gel-phase NMR spectroscopy
References
1a
Raillard SP.
Ji G.
Mann AD.
Baer TA.
Org. Process Res. Dev.
1999,
3:
177
1b
Meisenbach M.
Allmendinger T.
Mak C.-P.
Org. Process Res. Dev.
2003,
7:
553
2 Price for 100 g of Versabeads™ VO400 loading 2 mol·kg-1 (as used in this article): e 739 equal to e 370 per mol. Price for 100 g of Rapp Polymere hydroxymethyl polystyrene loading 1.5 mol·kg-1 : e 360 equal to e 240 per mol (price for 100 g of Rapp Polymere TentaGel Standard (water compatible), loading 0.3 mol·kg-1 : e 1010 equal to e 33667 per mol)
3a
Rademann J.
Grøtli M.
Meldal M.
Bock K.
J. Am. Chem. Soc.
1999,
121:
5459
3b
Christensen SF.
Michael R.
Chimica Oggi/Chemistry Today (Focus on Peptides & Amino Acids)
2004,
48
3c
Christensen SF.
Ramos M.
Michael R.
PharmaChem
2004,
9:
59
4a
López-Rodriguez ML.
Ayala D.
Benhamú B.
Morcillo MJ.
Viso A.
Curr. Med. Chem.
2002,
9:
443
4b
Bettinetti L.
Schlotter K.
Hübner H.
Gmeiner P.
J. Med. Chem.
2002,
45:
4594
4c
Grundt P.
Carlson EE.
Cao J.
Bennett CJ.
McElveen E.
Taylor M.
Luedke RR.
Newman AH.
J. Med. Chem.
2005,
48:
839
4d
Toogood PL.
Harvey PJ.
Repine JT.
Sheehan DJ.
VanderWel SN.
Zhou H.
Keller PR.
McNamara DJ.
Sherry D.
Zhu T.
Brodfuehrer J.
Choi C.
Barvian MR.
Fry DW.
J. Med. Chem.
2005,
48:
2388
4e
López-Rodríguez ML.
Morcillo MJ.
Fernández E.
Benhamú B.
Tejada I.
Ayala D.
Viso A.
Campillo M.
Pardo L.
Delgado M.
Manzarenas J.
Fuentes JA.
J. Med. Chem.
2005,
48:
2548
4f
Asahina Y.
Araya I.
Iwase K.
Iinuma F.
Hosaka M.
Ishizaki T.
J. Med. Chem.
2005,
48:
3443
4g
Cappeli A.
Gallelli A.
Manini M.
Anzini M.
Mennuni L.
Makovec F.
Menziani MC.
Alcaro S.
Ortuso F.
Vomero S.
J. Med. Chem.
2005,
48:
3564
5a
Lyon RA.
Titeler M.
McKenney JD.
Magee PS.
Glennon RA.
J. Med. Chem.
1986,
29:
630
5b
Mishani E.
Dence CS.
McCarthy TJ.
Welch MJ.
Tetrahedron Lett.
1996,
37:
319
5c
Elworthy TR.
Ford APDW.
Bantle GW.
Morgans DJ.
Ozer RS.
Palmer WS.
Repke DB.
Romero M.
Sandoval L.
Sjogren EB.
Talamas FX.
Vazquez A.
Wu H.
Arredondo NF.
Blue DR.
DeSousa A.
Gross LM.
Kava MS.
Lesnick JD.
Vimont RL.
Williams TJ.
Zhu Q.-M.
Pfister JR.
Clarke DE.
J. Med. Chem.
1997,
40:
2674
5d
Orús L.
Martínez J.
Pérez S.
Oficialdegui AM.
Del Castillo J.-C.
Mourelle M.
Lesheras B.
Del Rio J.
Monge A.
Pharmazie
2002,
57:
515
5e
Orus L.
Perez-Silanes S.
Oficialdegui A.-M.
Martinez-Esparza J.
Del Castillo J.-C.
Mourelle M.
Langer T.
Guccione S.
Donzella G.
Krovat EM.
Poptodorov K.
Lasheras B.
Ballaz S.
Hervias I.
Tordera R.
Del Rio J.
Monge A.
J. Med. Chem.
2002,
45:
4128
5f
Romeo G.
Materia L.
Manetti F.
Cagnotto A.
Mennini T.
Nicoletti F.
Botta M.
Russo F.
Minneman KP.
J. Med. Chem.
2003,
46:
2877
6a
Hauske JR.
Dorff P.
Tetrahedron Lett.
1995,
36:
1589
6b
Raju B.
Kogan TP.
Tetrahedron Lett.
1997,
38:
3373
Other examples of 13 C gel-phase spectroscopy include:
7a
Epton R.
Wellings DA.
Williams A.
React. Polym.
1987,
6:
143
7b
Look GC.
Holmes CP.
Chinn JP.
Gallop MA.
J. Org. Chem.
1994,
59:
7588
7c
Barn DR.
Morphy JR.
Rees DC.
Tetrahedron Lett.
1996,
37:
3213
7d
Lee HB.
Balasubramanian S.
J. Org. Chem.
1999,
64:
3454
7e
Ruhland T.
Pedersen H.
Andersen K.
Synthesis
2003,
2236
8a
Andersen HS.
Olsen OH.
Iversen LF.
Sørensen ALP.
Mortensen SB.
Christensen MS.
Branner S.
Hansen TK.
Lau JF.
Jeppesen L.
Moran EJ.
Su J.
Bakir F.
Judge L.
Shahbz M.
Collins T.
Vo T.
Newman MJ.
Ripka WC.
Møller NPH.
J. Med. Chem.
2002,
45:
4443
8b
Laduron F.
Tamborowsky V.
Moens L.
Hórvath A.
De Smaele D.
Leurs S.
Org. Process Res. Dev.
2005,
9:
102
9
Ho CY.
Kukla MJ.
Tetrahedron Lett.
1997,
38:
2799
10
Massicot F.
Schneider R.
Fort Y.
Illy-Cherrey S.
Tillement O.
Tetrahedron
2000,
56:
4765 ; and references cited therein
11a
Narasimhan S.
Madhavan S.
Balakumar R.
Swarnalakshmi S.
Synth. Commun.
1997,
27:
391
For an example of a reduction where Zn(BH4 )2 is generated in situ, see:
11b
Nair V.
Prabhakaran J.
George TG.
Tetrahedron
1997,
53:
15061
For a general review of the synthetic applications of Zn(BH4 )2 , see:
11c
Narasimhan S.
Balakumar R.
Aldrichimica Acta
1998,
31:
19
12 Zr(BH4 )4 has been employed for a similar purpose, see: Narasimhan S.
Balakumar R.
Synth. Commun.
2000,
30:
4387
13a
Lee S.-H.
Matsuhisa H.
Koch G.
Zimmermann J.
Clapham B.
Janda KD.
J. Comb. Chem.
2004,
6:
822
13b
Mormeneo D.
Llebaria A.
Delgado A.
Tetrahedron Lett.
2004,
45:
6831
(c) Sumiyoshi H.
Shimizu T.
Katoh M.
Baba Y.
Sodeoka M.
Org. Lett.
2002,
4:
3923
14 Foguet R, Forne E, Sacristan A, and Ortiz JA. inventors; Eur. Pat. Appl. EP 407437.
; Chem. Abstr. 1989 , 111 , 7437
15a
Mes GM.
van Ramesdonk HJ.
Verhoeven JW.
J. Am. Chem. Soc.
1984,
106:
1335
15b
Brenner E.
Schneider R.
Fort Y.
Tetrahedron
1999,
55:
12829
16 Compound 3h was only sparingly soluble in the NMR solvent, so quaternary carbon peaks were not visible.
17 Gentle magnetic stirring did not appear to damage the resin. Vigorous magnetic stirring, however, caused significant damage due to grinding.