Subscribe to RSS
DOI: 10.1055/s-2005-918963
Phosphinite Thioglycosides Derived from Natural d-Sugars as Useful P/S Ligands for the Synthesis of Both Enantiomers in Palladium-Catalyzed Asymmetric Substitution
Publication History
Publication Date:
27 October 2005 (online)
Abstract
Phosphinite thioglycosides I for which a modular synthetic approach is reported, were found highly efficient catalyst precursors for palladium(0)-catalyzed asymmetric substitution. Both enantiomers of the allylated products have been obtained with high ee (up to 96%) using natural sugars as catalyst precursors.
Key words
P/S ligands - carbohydrates - both enantiomers - allylic substitution
-
1a
Chiral Auxiliaries and Ligands in Asymmetric Synthesis
Seyden-Penne J. Wiley Interscience; New York: 1995. -
1b
Comprehensive Asymmetric Catalysis
Vol. 1-3:
Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. -
2a
Dieguez M.Pàmies O.Claver C. Chem. Rev. 2004, 104: 3189 -
2b
Steiborn D.Junicke H. Chem. Rev. 2000, 100: 4283 -
2c
Rajanbabu TV.Casalnuovo AL.Ayers TA. In Advances in Catalytic Processes Vol. 2:Doyle MP. JAI Press; Greenwich CT: 1998. p.1 -
3a
Casalnuovo AL.RajanBabu TV.Ayers TA.Warren TH. J. Am. Chem. Soc. 1994, 116: 9869 -
3b
Selke R.Swarze M.Baudisch H.Grassert I.Michalik M.Oehme G.Stoll N.Costisella B. J. Mol. Catal. 1993, 84: 223 -
3c
Dieguez M.Ruiz A.Claver C. J. Org. Chem. 2002, 67: 3796 -
3d
Reetz MT.Goosen LJ.Meiswinkel A.Paetzol J.Jensen JF. Org. Lett. 2003, 5: 3099 -
4a
Rajanbabu TV.Ayers TA.Casalnuovo AL. J. Am. Chem. Soc. 1994, 116: 4101 -
4b
Ayers TA, andRajanBabu TV. inventors; U. S. Patent 5510507. - 5
Evans DA.Campos KR.Tedrow JS.Michael FE.Gagné MR. J. Am. Chem. Soc. 2000, 122: 7905 -
7a
Molander G.Burke J.Carrol PJ. J. Org. Chem. 2004, 69: 8062 -
7b
Mancheño OG.Gomez Arrayas R.Carretero JC. J. Am. Chem. Soc. 2004, 126: 456 -
7c
Yan YY.RajanBabu TV. Org. Lett. 2000, 2: 199 -
7d
Albinati A.Pregosin PS.Wick K. Organometallics 1996, 15: 2419 - 8
Khiar N.Araújo CS.Alvarez E.Fernández I. Tetrahedron Lett. 2003, 44: 3401 - 9
Khiar N.Araújo CS.Suárez B.Álvarez E.Fernández I. Chem. Commun. 2004, 44: 714 -
10a
Ferrier RJ.Furneaux RH. Methods Carbohydr. Chem. 1980, 8: 251 -
10b
Khiar N.Martin-Lomas M. J. Org. Chem. 1995, 60: 7017 - 11
Ishihara K.Kurihara H.Yamamoto H. J. Org. Chem. 1993, 58: 3791 - 12
Yonehara K.Hashizume T.Mori K.Ohe K.Uemura S. J. Org. Chem. 1999, 64: 5593 -
15a
Selke R. React. Kinet. Catal. Lett. 1980, 14: 463 -
15b
Selke R. J. Organomet. Chem. 1989, 370: 249 - 16
Kunz H.Pfrengle W.Sager W. Tetrahedron Lett. 1989, 30: 4109
References
This work has been presented in part in the ISOCS-XXI, Madrid, Spain, 4-9 July 2004.
13Compound 12: 1H NMR (500 MHz, CDCl3): δ = 7.60-7.50 (m, 4 H), 7.38 -7.31 (m, 6 H), 7.21 (d, 2 H, J = 7.9 Hz), 7.02 (d, 2 H, J = 8.0 Hz), 4.58 (d, 1 H, J = 10.0 Hz), 4.35 (dd, 1 H, J = 4.5, 11.7 Hz), 4.29 (dd, 1 H, J = 7.7, 11.7 Hz), 4.23 (t, 1 H, J = 5.9 Hz), 4.13 (d, 1 H, J = 5.5 Hz), 4.02-3.93 (m, 2 H), 2.30 (s, 3 H), 1.43 (s, 3 H), 1.29 (s, 3 H), 1.19 (s, 9 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 178.3, 137.7, 132.4, 131.1 (d, J
PC = 11.8 Hz), 130.7 (d, J
PC = 11.8 Hz), 129.3 (d, J
PC = 26.0 Hz), 128.1 (d, J
PC = 6.8 Hz), 110.5, 88.4 (d, J
PC = 4.1 Hz), 80.4 (d, J
PC = 28.4 Hz), 79.1, 74.0, 73.7, 63.7, 38.7, 27.8, 27.1, 26.4, 21.2 ppm. 31P NMR (121.4 MHz, CDCl3): δ = 119.5 ppm.
Compound 13: 1H NMR (500 MHz, CDCl3): δ = 7.58-7.49 (m, 4 H), 7.36-7.32 (m, 6 H), 7.23 (d, 2 H, J = 7.9 Hz), 7.03 (d, 2 H, J = 7.9 Hz), 4.56 (d, 1 H, J = 9.4 Hz), 4.33 (d, 2 H, J = 6.1 Hz), 4.23 (t, 1 H, J = 5.9 Hz), 4.13 (dd, 1 H, J = 5.5, 1.5 Hz), 4.03-3.91 (m, 2 H), 2.31 (s, 3 H), 2.07 (s, 3 H), 1.41 (s, 3 H), 1.28 (s, 3 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 170.8, 142.6 (d, J
PC = 18.5 Hz), 141.9 (d, J
PC = 15.4 Hz), 137.7, 132.6, 130.9 (d, J
PC = 21.8 Hz), 130.8 (d, J
PC = 21.8 Hz), 130.2, 129.3 (d, J
PC = 30.2 Hz), 128.1 (d, J
PC = 6.9 Hz), 110.6, 87.9 (d, J
PC = 4.2 Hz), 80.0 (d, J
PC = 18.4 Hz), 79.1, 73.9, 73.6, 63.8, 27.7, 26.4, 21.1, 20.8 ppm. 31P NMR (121.4 MHz, CDCl3): δ = 119.4 ppm.
Compound 14: 1H NMR (500 MHz, CDCl3): δ = 7.57-7.50 (m, 4 H), 7.35-7.32 (m, 6 H), 5.56 (d, 1 H, J = 5.1 Hz), 4.70-4.67 (m, 1 H), 4.34-4.11 (m, 5 H), 2.02 (s, 3 H), 1.41 (s, 3 H), 1.30 (s, 12 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 170.7, 141.8 (d, J
PC = 19.4 Hz), 141.7 (d, J
PC = 16.0 Hz), 130.9 (d, J
PC = 21.8 Hz), 130.7 (d, J
PC = 21.7 Hz), 129.3 (d, J
PC = 2.7 Hz), 128.2 (d, J
PC = 7.0 Hz), 128.1 (d, J
PC = 7.0 Hz), 109.7, 81.3 (d, J
PC = 5.6 Hz), 77.8 (d, J
PC = 18.8 Hz), 75.6 (d, J
PC = 5.0 Hz), 73.8, 66.6, 63.5, 43.8, 31.3, 27.9, 26.3, 20.8 ppm. 31P NMR (121.4 MHz, CDCl3): δ = 117.5 ppm.
Compound 15: 1H NMR (500 MHz, CDCl3): δ = 7.56-7.47 (m, 4 H), 7.34-7.29 (m, 6 H), 4.51 (d, 1 H, J = 9.5 Hz), 4.33-4.26 (m, 3 H), 4.15 (dd, 1 H, J = 1.8, 5.6 Hz), 3.96-3.88 (m, 2 H), 2.03 (s, 3 H), 1.42 (s, 3 H), 1.29 (s, 3 H), 1.22 (s, 9 H) ppm.13C NMR (125 MHz, CDCl3): δ = 170.8, 142.9 (d, J
PC = 18.4 Hz), 142.1 (d, J
PC = 15.2 Hz), 131.3 (d, J
PC = 22.1 Hz), 130.5 (d, J
PC = 21.3 Hz), 129.0 (d, J
PC = 32.5 Hz), 128.0 (d, J
PC = 6.4 Hz), 127.9 (d, J
PC = 7.2 Hz), 110.5, 83.1 (d, J
PC = 3.3 Hz), 80.6 (d, J
PC = 18.7 Hz), 79.3 (d, J
PC = 2.7 Hz), 73.6 (2 C), 63.9, 44.1, 31.3, 27.7, 26.4, 20.8 ppm. 31P NMR (121.4 MHz, CDCl3): δ = 119.8 ppm.
Compound 21: 1H NMR (500 MHz, CDCl3): δ = 7.54-7.46 (m, 4 H), 7.33-7.29 (m, 6 H), 4.76 (d, 1 H, J = 6.9 Hz), 4.28-4.26 (m, 1 H), 4.22 (t, 1 H, J = 5.7 Hz), 4.10-4.01 (m, 1 H), 3.70 (dd, 1 H, J = 4.4, 12.7 Hz), 1.47 (s, 3 H), 1.30 (s, 3 H), 1.19 (s, 9 H) ppm.13C NMR (125 MHz, CDCl3): δ = 131.2 (d, J
PC = 22.1 Hz), 130.5 (d, J
PC = 21.4 Hz), 129.1 (d, J
PC = 31.7 Hz), 128.1 (d, J
PC = 5.9 Hz), 128.0 (d, J
PC = 6.7 Hz), 110.1, 84.5, 82.6 (d, J
PC = 4.2 Hz), 80.3 (d, J
PC = 19.2 Hz), 72.2, 63.2, 44.0, 31.3, 27.8, 26.3 ppm. 31P NMR (121.4 MHz, CDCl3): δ = 118.6 ppm.
Typical Procedure.
To a solution of the ligand (4.3 mol%) in dry deoxygenated CH2Cl2 (0.5 mL), [PdCl(C3H5)]2 (1.5 mol%) was added under argon. The reaction mixture was stirred for 1 h at r.t., then a catalytic amount of KOAc (0.5 mg) was added, followed by BSA (3 mol equiv) and a solution of 1,3-diphenyl-2-propenyl acetate (16, 1 mol equiv) in dry deoxygenated CH2Cl2 (0.7 mL). The temperature was then adjusted to the desired one (see Table
[1]
) and dimethyl malonate (3 equiv) was added. Once the reaction finished as judged by TLC, the solvent was evaporated and the residue purified by column chromatography, affording the desired product 17 as a viscous oil, which solidify on standing. The ee was determined by chiral HPLC using a Chiralpack AD column (1 mL/min, i-PrOH-hexane, 5:95, 30 °C). Retention times: (R)-17: t
R = 14.2 min, (S)-17: t
R = 19.5 min.