Subscribe to RSS
DOI: 10.1055/s-2005-921885
Radion Reactions To Form Vinylphosphonothioates
Publication History
Publication Date:
04 November 2005 (online)
Abstract
Radical addition of diethyl thiophosphite to terminal alkenes followed by consecutive α-silylation and Peterson reactions, efficiently forms vinylphosphonothioates, in one-pot radion reactions.
Key words
radical reaction - Peterson reaction - phosphorus hydride
- Selected examples:
-
1a
Trofimov BA.Gusarova NK.Malysheva SF.Ivanova NI.Sukhov BG.Belogorlova NA.Kuimov VA. Synthesis 2002, 2207 -
1b
Rey P.Taillades J.Rossi JC.Gros G. Tetrahedron Lett. 2003, 44: 6169 -
1c
Dubert O.Gautier A.Condamine E.Piettre SR. Org. Lett. 2002, 4: 359 -
1d
Gautier A.Garipova G.Dubert O.Oulyadi H.Piettre SR. Tetrahedron Lett. 2001, 42: 5673 -
1e
Sato A.Yorimitsu H.Oshima K. Angew. Chem. Int. Ed. 2005, 44: 1694 -
2a
Jessop CM.Parsons AF.Routledge A.Irvine D. Tetrahedron Lett. 2003, 44: 479 -
2b
Jessop CM.Parsons AF.Routledge A.Irvine DJ. Tetrahedron: Asymmetry 2003, 14: 2849 - 3
Healy MP.Parsons AF.Rawlinson JGT. Org. Lett. 2005, 7: 1597 - 4 For an isolated example see:
Yokomatsu T.Sada T.Shimizu T.Shibuya S. Tetrahedron Lett. 1998, 39: 6299 - 5
Minami T.Motoyoshiya J. Synthesis 1992, 333 - 6
Ruiz M.Fernández MC.Díaz A.Quintela JM.Ojea V. J. Org. Chem. 2003, 68: 7634 - 7
van Staden LF.Gravestock D.Ager DJ. Chem. Soc. Rev. 2002, 31: 195 -
8a
Mikolajczyk M.Balczewski P. Synthesis 1989, 101 -
8b
Aboujaoude EE.Liétjé S.Collignon N.Teulade MP.Savignac P. Synthesis 1986, 934 -
8c
Savignac P.Teulade M.-P.Collignon N. J. Organomet. Chem. 1987, 323: 135 -
8d
Waschbüsch R.Carran J.Savignac P. Tetrahedron 1996, 52: 14199 -
8e
Diziére R.Savignac P. Tetrahedron Lett. 1996, 37: 1783 - 11
Aboujaoude EE.Lietjé S.Collignon N. Tetrahedron Lett. 1985, 26: 4435 - 12
Bassindale AR.Ellis RJ.Lau JC.-Y.Taylor PG. J. Chem. Soc., Perkin Trans. 2 1986, 593 - 13
Armstrong DR.Barr D.Davidson MG.Hutton G.O’Brien P.Snaith R.Warren S. J. Organomet. Chem. 1997, 529: 29 - 14
Cristan H.-J.Mbianda XY.Beziat Y.Gasc M.-B. J. Organomet. Chem. 1997, 529: 301 -
15a
Agnel G.Negishi E. J. Am. Chem. Soc. 1991, 113: 7425 -
15b
Rowe BJ.Spilling CD. J. Org. Chem. 2003, 68: 9502
References
All new compounds gave consistent spectral and HRMS data.
10
Typical Procedure for the Preparation of O
,
O
-Diethyl (
E
,
Z
)-1-Heptyl-2-(4-methoxyphenyl)ethenylphosphono-thioate (
6a).
A solution of 1-octene (0.14 mL, 0.89 mmol), diethyl thiophosphite (0.15 g, 0.98 mmol) and AIBN (0.036 g, 0.22 mmol) in anhyd THF (10 mL) was heated at reflux for 8 h. A further portion of AIBN (0.036 g, 0.22 mmol) was added and the reaction was heated again at reflux for further 16 h then cooled to -78 °C. s-BuLi (1.59 mL of a 1.4 M solution in cyclohexane, 2.23 mmol) was added and the reaction was stirred at -78 °C for 0.5 h. After this time a solution of freshly distilled chlorotrimethylsilane (0.23 mL, 1.78 mmol) in anhyd THF (1.0 mL) was added and the reaction was warmed to r.t. and stirred at this temperature for 0.5 h. The reaction mixture was again cooled to -78 °C and s-BuLi (0.76 mL of a 1.4 M solution in cyclohexane, 1.07 mmol) was added and the reaction was stirred at this temperature for 0.25 h after which time a solution of 4-methoxybenz-aldehyde (0.17 mL, 1.42 mmol) in anhyd THF (1.0 mL) was added. The reaction mixture was allowed to warm slowly to r.t. and was stirred at this temperature for 16 h. The reaction was then quenched with NH4Cl (10 mL of a sat. aq solution) and extracted with Et2O (3 × 25 mL). The combined organic phases were dried over MgSO4, filtered and concentrated to afford a crude residue that was purified by flash column chromatography on silica using PE-Et2O with a solvent gradient of (199:1 to 9:1) as eluent to afford vinylphos-phonothioate 6a (0.28 g, 83%) as a colourless oil and as an inseparable 1:10 mixture of E- and Z-isomers as judged from the 1H NMR spectrum.
Compound (Z)-6a: R
f
= 0.20 (PE-Et2O, 9:1). IR (neat):
νmax = 2956 (s), 2925 (s), 2855 (s), 1607 (s), 1509 (s), 1464 (m), 1442 (w), 1388 (w), 1296 (w), 1253 (s), 1178 (s), 1049 (s), 1029 (s) cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.52 (d, J = 8.5 Hz, 2 H, C=CH, Ar), 6.95 (d, 3
J
HP = 49.5 Hz, 1 H, PC=CH), 6.84 (d, J = 8.5 Hz, 2 H, CH=COMe, Ar), 3.90 (dq, 3
J
HP = 9.5 Hz, J = 7.0 Hz, 4 H, 2 × POCH
2), 3.66 (s, 3 H, OCH
3), 2.44 (dt, 2
J
HP = 15.0 Hz, J = 7.5 Hz, 2 H, PCCH
2), 1.72-1.58 (m, 2 H, PCCH2CH
2), 1.41-1.25 (m, 8 H, 4 × CH
2) 1.07 (t, J = 7.0 Hz, 6 H, 2 × OCH2CH
3), 0.89 (t, J = 6.5 Hz, 3 H, CH
3). 13C NMR (100 MHz, CDCl3): δ = 159.5 (COMe, Ar), 140.4 (d, 2
J
CP = 8.5 Hz, PC=CH), 133.4 (d, 1
J
CP = 137.5 Hz, PC=CH), 130.9 (d, 4
J
CP = 2.5 Hz, C=CH, Ar), 128.9 (d, 3
J
CP = 7.0 Hz, PC=CHC, Ar), 112.8 (CH=COMe), 61.9 (d, 2
J
CP = 7.0 Hz, 2 × OCH2), 55.06 (OCH3), 36.3 (d, 2
J
CP = 14.0 Hz, PCCH2), 31.7 (CH2), 30.0 (d, 3
J
CP = 3.0 Hz, PCCH2
CH2), 29.1 (CH2), 28.9 (CH2), 22.5 (CH2CH3), 15.6 (d, 3
J
CP = 8.5 Hz, 2 × OCH2
CH3), 13.9 (CH3). MS (CI, NH3): m/z (%) = 385 (100) [M + H+]. HRMS: m/z calcd for C20H33O3PS: 385.1966 [M + H+]. Found: 385.1964 [M + H+]. The presence of compound (E)-6a was given by the following signals in the 1H NMR and 13C NMR spectra. 1H NMR (400 MHz, CDCl3): δ = 7.35 (d, J = 8.5 Hz, 2 H, C=CH, Ar), 4.16-4.08 (m, 4 H, 2 ¥ POCH
2), 3.83 (dq, 3
J
HP = 8.5 Hz, J = 7.0 Hz, 2 H, POCH
2), 2.60-2.51 (m, 2 H, PCCH
2), 1.33 (t, J = 7.0 Hz, 6 H, 2 × OCH2CH
3). 13C NMR (100 MHz, CDCl3): δ = 159.5 (COMe, Ar), 141.8 (d, 2
J
CP = 17.5 Hz, C=CH), 113.7 (CH=COMe), 62.2 (d, 2
J
CP = 6.0 Hz, 2 × OCH2), 55.08 (OCH3), 16.0 (d, 3
J
CP = 7.5 Hz, 2 × OCH2
CH3).