References
<A NAME="RU19405ST-1A">1a</A>
Varki A.
Glycobiology
1993,
3:
97
<A NAME="RU19405ST-1B">1b</A>
Biology of Sialic Acids
Rosenberg A.
Plenum Press;
New York, London:
1995.
<A NAME="RU19405ST-1C">1c</A>
Schauer R.
Biochemistry of Sialic Acid Diversity, In Carbohydrates in Chemistry and Biology
Vol. 3:
Ernst B.
Hart GW.
Sinaӱ P.
Wiley-VCH;
Weinheim:
2000.
p.227-243
<A NAME="RU19405ST-1D">1d</A>
Ando T.
Ando H.
Kiso M.
Trend. Glycosci. Glycotech.
2001,
13:
573
<A NAME="RU19405ST-1E">1e</A>
Allende ML.
Proia RL.
Curr. Opin. Struct. Biol.
2002,
12:
587
<A NAME="RU19405ST-1F">1f</A>
Crocker PR.
Curr. Opin. Struct. Biol.
2002,
12:
609
<A NAME="RU19405ST-1G">1g</A>
Kannagi R.
Curr. Opin. Struct. Biol.
2002,
12:
599
<A NAME="RU19405ST-2A">2a</A>
Murase T.
Ishida H.
Kiso M.
Hasegawa A.
Carbohydr. Res.
1988,
184:
C1
<A NAME="RU19405ST-2B">2b</A>
Kirchner E.
Thiem F.
Dernick R.
Heukeshoven J.
Thiem J.
J. Carbohydr. Chem.
1988,
7:
453
<A NAME="RU19405ST-2C">2c</A>
Kanie O.
Kiso M.
Hasegawa A.
J. Carbohydr. Chem.
1988,
7:
501
<A NAME="RU19405ST-2D">2d</A>
Ito Y.
Ogawa T.
Tetrahedron Lett.
1988,
29:
1061
<A NAME="RU19405ST-2E">2e</A>
Marra A.
Sina P.
Carbohydr. Res.
1990,
195:
303
<A NAME="RU19405ST-2F">2f</A>
Ito Y.
Ogawa T.
Carbohydr. Res.
1990,
202:
165
<A NAME="RU19405ST-2G">2g</A>
Birberg W.
Lonn H.
Tetrahedron Lett.
1991,
32:
7453
<A NAME="RU19405ST-2H">2h</A>
Hasegawa A.
Ohki H.
Nagahama T.
Ishida H.
Kiso M.
Carbohydr. Res.
1991,
212:
277
<A NAME="RU19405ST-2I">2i</A>
Hasegawa A.
Nagahama T.
Ohki H.
Hotta K.
Ishida H.
Kiso M.
J. Carbohydr. Chem.
1991,
10:
493
<A NAME="RU19405ST-2J">2j</A>
Kondo H.
Ichikawa Y.
Wong C.-H.
J. Am. Chem. Soc.
1992,
114:
8746
<A NAME="RU19405ST-2K">2k</A>
Roy R.
Andersson FO.
Letellier M.
Tetrahedron Lett.
1992,
33:
6053
<A NAME="RU19405ST-2L">2l</A>
Martin TJ.
Schmidt RR.
Tetrahedron Lett.
1992,
33:
6123
<A NAME="RU19405ST-2M">2m</A>
Martichonok V.
Whitesides GM.
J. Org. Chem.
1996,
61:
1702
<A NAME="RU19405ST-2N">2n</A>
Ando T.
Ishida H.
Kiso M.
Carbohydr. Res.
2003,
338:
503
<A NAME="RU19405ST-2O">2o</A>
Boons BJ.
Demchenko AV.
Chem. Rev.
2000,
100:
4539
<A NAME="RU19405ST-2P">2p</A>
Yu C.-S.
Niikura K.
Lin C.-C.
Wong C.-H.
Angew. Chem. Int. Ed.
2001,
40:
2900
<A NAME="RU19405ST-2Q">2q</A>
Castro-Palomino JC.
Simon B.
Speer O.
Leist M.
Schmidt RR.
Chem.-Eur. J.
2001,
7:
2178
<A NAME="RU19405ST-2R">2r</A>
De MeO C.
Demchenko AV.
Boons GJ.
J. Org. Chem.
2001,
66:
5490
<A NAME="RU19405ST-2S">2s</A>
Xia J.
Alderfer JL.
Piskorz CF.
Matta KL.
Chem.-Eur. J.
2001,
7:
356
<A NAME="RU19405ST-2T">2t</A>
Halcomb RL.
Chappell MD.
J. Carbohydr. Chem.
2002,
21:
723
<A NAME="RU19405ST-2U">2u</A>
Ren C.-T.
Chen C.-S.
Wu S.-H.
J. Org. Chem.
2002,
67:
1376
<A NAME="RU19405ST-2V">2v</A>
Haberman JM.
Gin DY.
Org. Lett.
2003,
5:
2539
Representative examples of N-glycolyl derivatives, see:
<A NAME="RU19405ST-3A">3a</A>
Numata M.
Sugimoto M.
Shibayama S.
Ogawa T.
Carbohydr. Res.
1988,
174:
73
<A NAME="RU19405ST-3B">3b</A>
Yamamoto T.
Teshima T.
Saitou U.
Hoshi M.
Shiba T.
Tetrahedron Lett.
1994,
35:
2701
<A NAME="RU19405ST-3C">3c</A>
Tanaka M.
Kai T.
Sun X.-L.
Takayanagi H.
Furuhata K.
Chem. Pharm. Bull.
1995,
43:
2095
<A NAME="RU19405ST-3D">3d</A>
Hasegawa A.
Uchimura A.
Ishida H.
Kiso M.
Biosci. Biotech. Biochem.
1995,
59:
1091
<A NAME="RU19405ST-3E">3e</A>
Sugata T.
Higuchi R.
Tetrahedron Lett.
1996,
37:
2613
<A NAME="RU19405ST-3F">3f</A>
Scherman AA.
Yudina ON.
Shashkov AS.
Menshov VM.
Nifant’ev NE.
Carbohydr. Res.
2001,
330:
445
Examples for de-N-acetyl derivatives:
<A NAME="RU19405ST-3G">3g</A>
Fujita S.
Numata M.
Sugimoto M.
Tomita K.
Ogawa T.
Carbohydr. Res.
1992,
228:
347
<A NAME="RU19405ST-3H">3h</A>
Komba S.
Galustian C.
Ishida H.
Feizi T.
Kannagi R.
Kiso M.
Angew. Chem. Int. Ed.
1999,
38:
1131
<A NAME="RU19405ST-3I">3i</A> Example for 1,5-lactam derivatives:
Otsubo N.
Yamaguchi M.
Ishida H.
Kiso M.
J. Carbohydr. Chem.
2001,
20:
329
<A NAME="RU19405ST-4A">4a</A>
Schmidt RR.
Kinzy W.
Adv. Carbohydr. Chem. Biochem.
1994,
50:
21
<A NAME="RU19405ST-4B">4b</A>
Schmidt RR.
Jung K.-J. In
Preparative Carbohydrate Chemistry
Hanessian S.
Marcel Dekker;
New York:
1997.
p.283
<A NAME="RU19405ST-5A">5a</A>
Okamoto K.
Goto T.
Tetrahedron
1990,
46:
5835
<A NAME="RU19405ST-5B">5b</A>
DeNinno MP.
Synthesis
1991,
583
<A NAME="RU19405ST-5C">5c</A>
Boons G.-J.
Demchenko AV.
Chem. Rev.
2000,
100:
4539
<A NAME="RU19405ST-6">6</A>
Cai S.
Yu B.
Org. Lett.
2003,
5:
3827
<A NAME="RU19405ST-7A">7a</A>
Ando H.
Koike Y.
Ishida H.
Kiso M.
Tetrahedron Lett.
2003,
44:
6883
<A NAME="RU19405ST-7B">7b</A>
Adachi M.
Tanaka H.
Takahashi T.
Synlett
2004,
609
<A NAME="RU19405ST-8">8</A>
Cao S.
Meunier SJ.
Andersson FO.
Letellier M.
Roy R.
Tetrahedron: Asymmetry
1994,
5:
2303
<A NAME="RU19405ST-9A">9a</A>
Dabrowski U.
Friebolin H.
Brossmer R.
Supp M.
Tetrahedron Lett.
1979,
20:
4637
<A NAME="RU19405ST-9B">9b</A>
Paulsen H.
Tietz H.
Angew. Chem., Int. Ed. Engl.
1982,
21:
927
<A NAME="RU19405ST-10A">10a</A>
Schmidt RR.
Rucker E.
Tetrahedron Lett.
1980,
21:
1421
<A NAME="RU19405ST-10B">10b</A>
Ratcliffe AJ.
Fraser-Reid B.
J. Chem. Soc., Perkin Trans. 1
1990,
747
<A NAME="RU19405ST-11">11</A>
Experimental Procedure of 4d.
To a solution of the donor 2d (50 mg, 66.6 µmol), acceptor 3 (45 mg, 99.9 µmol), and MS 4 Å in propionitrile (1 mL) was added TMSOTf (2.5 µL,
13.3 µmol) at -78 °C under Ar atmosphere. After the mixture was stirred for 30 min
at this temperature, the reaction was quenched by a sat. NaHCO3 solution. After MS 4 Å was removed by filtration, the filtrate was extracted with
EtOAc, washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo to give the crude product. The residue was purified
by column chromato-graphy on silica gel (CHCl3) to afford the α-sialoside 4d
(61 mg, 92%).
1H NMR (500 MHz, CDCl3): δ = 8.01 (4 H, m, PhCO-), 7.83 (2 H, m, Pht), 7.73 (2 H, m, Pht), 7.50 (4 H, m,
PhCO-), 7.37 (2 H, m, PhCO-), 5.87 (1 H, ddd, J = 5.5, 10.7, 22.3 Hz,
-OCH2CH=CH2), 5.71 (2 H, m, H-2, H-3), 5.51 (1 H, td, J = 6.3, 16.5 Hz, H-4′), 5.45 (1 H, td, J = 2.7, 5.5 Hz, H-8′), 5.34 (1 H, H-4), 5.31 (1 H, dd, J = 1.7, 17.2 Hz,
-OCH2CH=CH2), 5.18 (1 H, dd, J = 2.4, 8.3 Hz, H-7′), 5.15 (1 H, dd, J = 1.4, 10.4 Hz, -OCH2CH=CH2), 5.10 (1 H, dd, J = 2.3, 10.6 Hz, H-6′), 4.43 (1 H, s, H-1), 4.29 (1 H, dd, H-9′a), 4.28 (1 H, dd,
OCH2CH=CH2), 4.23 (1 H, t, J = 10.6 Hz, H-5′), 4.19 (1 H, H-5), 4.08 (1 H, dd, -OCH2CH=CH2), 4.05 (1 H, dd, H-9′), 4.03 (1 H, H-6a), 3.91 (3 H, s,
-COOCH3) 3.87 (1 H, dd, J = 6.5, 10.0 Hz, H-6b), 3.03 (1 H, -OH), 2.80 (1 H, dd, J = 5.1, 12.9 Hz, H-3′eq), 2.15, 2.13, 1.88, 1.84 (3 H, s, CH3CO-), 2.01 (1 H, H-3′ax). ESI-MS (+): m/z = 1012.24 [M + Na]+.
<A NAME="RU19405ST-12">12</A>
Data for α-anomer of 6: 1H NMR (500 MHz, CDCl3): δ = 8.13 (4 H, m, PhCO-), 7.83 (2 H, m, Pht), 7.73 (2 H, m, Pht), 7.58 (4 H, m,
PhCO-), 7.47 (2 H, m, PhCO-), 7.35 (5 H, m, PhCH2-), 5.90 (1 H, ddd, J = 4.5, 9.7, 22.1 Hz,
-OCH2CH=CH2), 5.52 (1 H, td, J = 5.0, 15.9 Hz, H-4′), 5.43-5.39 (2 H, m, H-8′, H-2), 5.31 (1 H, -OCH2CH=CH2), 5.24 (1 H, d, J = 2.6 Hz, H-1), 5.14 (1 H, dd, H-7′), 5.14 (1 H, dd, J = 1.7, 10.9 Hz, -OCH2CH=CH2), 5.02 (1 H, dd, J = 1.7, 10.9 Hz, H-6′), 4.76 (1 H, dd, J = 3.6, 10.3 Hz, H-9′a), 4.64 (1 H, d, J = 8.5 Hz, PhCH2-), 4.62 (1 H, d, J = 8.5 Hz, PhCH2-), 4.21 (1 H, dd, OCH2CH=CH2), 4.21 (1 H, H-3), 4.17 (1 H, H-5′), 4.19 (1 H, H-5), 4.06 (1 H, dd, J = 6.0, 13.3 Hz, -OCH2CH=CH2), 4.00 (1 H, dd, J = 5.4, 12.4 Hz, H-9′b), 3.89-3.78 (2 H, H-6), 3.82 (3 H, s, -COOCH3), 2.95 (1 H, -OH), 2.62 (1 H, dd, J = 4.9, 13.3 Hz, H-3′eq), 2.12, 2.00, 1.91, 1.80 (3 H, s,CH3CO-), 2.07 (1 H, H-3′ax). ESI-MS (+): m/z = 998.34 [M + Na]+.
<A NAME="RU19405ST-13">13</A>
The C2-α-configuration in (2-3)- and (2-4)-sialoglycosides 8 and 9 were assigned from the NOEs between methyl protons of the ester and H-4 and/or H-6
in the neuramic acid moiety.