Abstract
This account details new reactions and synthetic uses of lithiated epoxides and aziridines that have been developed in the principal author’s laboratories.
1 Introduction
2 Epoxides and Organolithiums
2.1 Enantioselective Desymmetrisation of meso -Epoxides by α-Lithiation-Rearrangement
2.2 Reductive Alkylation of Epoxides with Organolithiums
2.3 α-Lithiated Epoxides of Cycloalkenes as Nucleophiles
2.4 α-Lithiated Terminal Epoxides as Nucleophiles
3 Terminal Epoxides and Lithium Amides
3.1 Electrophile Trapping
3.2 Enamines from Epoxides and Hindered Lithium Amides
3.3 Intramolecular Cyclopropanation
3.4 Reductive Alkylation in the presence of LTMP
3.5 Dimerisation of α-Lithiated Epoxides
4 α-Lithiated Aziridines
4.1 Reductive Alkylation of Aziridines with Organolithiums
4.2 α-Lithiated Terminal Aziridines as Nucleophiles
5 Summary and Outlook
Key words
asymmetric synthesis - aziridines - carbenoids - epoxides - lithiation
References and Notes 1 Present address: School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
2a
Hodgson DM.
Gibbs AR.
Lee GP.
Tetrahedron
1996,
52:
14361
2b
Hodgson DM.
Gras E.
Synthesis
2002,
1625
2c
Hodgson DM.
Tomooka K.
Gras E.
Organolithiums in Enantioselective Synthesis, In Topics in Organometallic Chemistry
Vol. 5:
Hodgson DM.
Springer;
Berlin:
2003.
p.217
2d
Hodgson DM.
Bray CD. In
Aziridines and Epoxides in Organic Synthesis
Yudin AK.
Wiley-VCH;
Weinheim:
2006.
p.145
For other recent reviews, see:
2e
Oxiranyl and Aziridinyl Anions as Reactive Intermediates in Synthetic Organic Chemistry , In Tetrahedron Symposia-in-Print , Florio, S., Ed. Tetrahedron
2003,
59:
9683
2f
Chemla F.
Vrancken E. In
The Chemistry of Organolithium Reagents
Rappoport Z.
Marek I.
Wiley and Sons;
New York:
2004.
p.1165
2g
Capriati V.
Florio S.
Luisi R.
Synlett
2005,
1359
3
Hoffmann R.
Angew. Chem., Int. Ed. Engl.
1988,
27:
1593
4
Hodgson DM.
Witherington J.
Moloney BA.
J. Chem. Soc., Perkin Trans. 1
1993,
1543
5
Hodgson DM.
Witherington J.
Moloney BA.
Tetrahedron: Asymmetry
1994,
5:
337
6
Hodgson DM.
Witherington J.
Moloney BA.
J. Chem. Soc., Perkin Trans. 1
1994,
23:
3373
7
Hodgson DM.
Gibbs AR.
Tetrahedron Lett.
1997,
38:
8907
8
Hodgson DM.
Gibbs AR.
Drew MGB.
J. Chem. Soc., Perkin Trans. 1
1999,
3579
9
Hodgson DM.
Gibbs AR.
Synlett
1997,
657
10
Hodgson DM.
Gibbs AR.
Tetrahedron: Asymmetry
1996,
7:
407
11
Crandall JK.
Apparu M.
Org. React.
1983,
29:
345
12
Cope AC.
Lee H.-H.
Petree HE.
J. Am. Chem. Soc.
1958,
80:
2849
13
Boeckman RK.
Tetrahedron Lett.
1977,
18:
4281
14a
Hoppe D.
Hintze F.
Tebben P.
Angew. Chem., Int. Ed. Engl.
1990,
29:
1422
14b Review: Hoppe D.
Hintze F.
Tebben P.
Paetow M.
Ahrens H.
Schwerdtfeger J.
Sommerfeld P.
Haller J.
Guarnieri W.
Kolczewski S.
Hense T.
Hoppe I.
Pure Appl. Chem.
1994,
66:
1479
15
Hodgson DM.
Lee GP.
Chem. Commun.
1996,
1015
16
Hodgson DM.
Lee GP.
Marriott RE.
Thompson AJ.
Wisedale R.
Witherington J.
J. Chem. Soc., Perkin Trans. 1
1998,
2151
17 For our preparation of i -PrLi see http://www.syntheticpages.org/search.php?&action = 1&page = 1&id = 195.
18
Hodgson DM.
Lee GP.
Tetrahedron: Asymmetry
1997,
8:
2303
19
Crandall JK.
J. Org. Chem.
1964,
29:
2830
20
Hodgson DM.
Wisedale R.
Tetrahedron: Asymmetry
1996,
7:
1275
21
Hodgson DM.
Marriott RE.
Tetrahedron Lett.
1997,
38:
887
22
Hodgson DM.
Marriott RE.
Tetrahedron: Asymmetry
1997,
8:
519
23
Hodgson DM.
Robinson LA.
Chem. Commun.
1999,
309
24
Hodgson DM.
Cameron ID.
Christlieb M.
Green R.
Lee GP.
Robinson LA.
J. Chem. Soc., Perkin Trans. 1
2001,
2161
25
Hodgson DM.
Robinson LA.
Jones ML.
Tetrahedron Lett.
1999,
40:
8637
26
Hodgson DM.
Maxwell CR.
Wisedale R.
Matthews IR.
Carpenter KJ.
Dickenson AH.
Wonnacott S.
J. Chem. Soc., Perkin Trans. 1
2001,
3150
27
Hodgson DM.
Maxwell CR.
Matthews IR.
Synlett
1998,
1349
28
Hodgson DM.
Galano J.-M.
Org. Lett.
2005,
7:
2221 ; and references cited therein
29
Hodgson DM.
Maxwell CR.
Matthews IR.
Tetrahedron: Asymmetry
1999,
10:
1847
30
Hodgson DM.
Cameron ID.
Org. Lett.
2001,
3:
441
31a
Hodgson DM.
Galano J.-M.
Christlieb M.
Chem. Commun.
2002,
2436
31b
Hodgson DM.
Galano J.-M.
Christlieb M.
Tetrahedron
2003,
59:
9719
32
Crandall JK.
Lin L.-HC.
J. Am. Chem. Soc.
1967,
89:
4527
33
Boche G.
Lohrenz JCW.
Chem. Rev.
2001,
101:
697
34
Julia M.
Pfeuty-Saint Jalmes V.
Ple K.
Verpeaux J.-N.
Bull. Soc. Chim. Fr.
1996,
133:
15
35a
Doris E.
Dechoux L.
Mioskowski C.
Tetrahedron Lett.
1994,
35:
7943
35b
Doris E.
Dechoux L.
Mioskowski C.
Synlett
1998,
337
36
Sun P.
Weinreb SM.
Shang M.
J. Org. Chem.
1997,
62:
8604
37a
Hodgson DM.
Miles TJ.
Witherington J.
Synlett
2002,
310
37b
Hodgson DM.
Miles TJ.
Witherington J.
Tetrahedron
2003,
59:
9729
38a
Hodgson DM.
Maxwell CR.
Miles TJ.
Paruch E.
Stent MAH.
Matthews IR.
Wilson FX.
Witherington J.
Angew. Chem. Int. Ed.
2002,
41:
4313
38b
Hodgson DM.
Maxwell CR.
Miles TJ.
Paruch E.
Matthews IR.
Witherington J.
Tetrahedron
2004,
60:
3611
38c
Hodgson DM.
Paruch E.
Tetrahedron
2004,
60:
5185
39
Dechoux L.
Doris E.
Mioskowski C.
Chem. Commun.
1996,
549
40a
Hodgson DM.
Stent MAH.
Wilson FX.
Org. Lett.
2001,
3:
3401
40b
Hodgson DM.
Stent MAH.
Wilson FX.
Synthesis
2002,
1445
41
Hodgson DM.
Stent MAH.
Štefane B.
Wilson FX.
Org. Biomol. Chem.
2003,
1:
1139
42
Eisch JJ.
Galle JE.
J. Am. Chem. Soc.
1976,
98:
4646
43
Satoh T.
Chem. Rev.
1996,
96:
3303
44a
Hodgson DM.
Gras E.
Angew. Chem. Int. Ed.
2002,
41:
2376
44b
Hodgson DM.
Buxton TJ.
Cameron ID.
Gras E.
Kirton EHM.
Org. Biomol. Chem.
2003,
1:
4293
45
Tokunaga M.
Larrow JF.
Kakauchi F.
Jacobsen EN.
Science
1997,
277:
936
46 The trans -stereochemistry was anticipated based on the reductive alkylation studies of Mioskowski and co-workers; see ref. 35.
47
Hodgson DM.
Norsikian SLM.
Org. Lett.
2001,
3:
461
48
Hudrlik PF.
Hudrlick AM. In
Advances in Silicon Chemistry
Vol. 2:
Larson GL.
JAI;
Greenwich:
1993.
p.1
49
Hodgson DM.
Comina PJ.
Drew MGB.
J. Chem. Soc., Perkin Trans. 1
1997,
2279
50
Hodgson DM.
Kirton EHM.
Synlett
2004,
1610
51
Hodgson DM.
Kirton EHM.
Miles SM.
Norsikian SLM.
Reynolds NJ.
Coote SJ.
Org. Biomol. Chem.
2005,
3:
1893
52
Hodgson DM.
Reynolds NJ.
Coote SJ.
Org. Lett.
2004,
6:
4187
53
Yanagisawa A.
Yasue K.
Yamamoto H.
J. Chem. Soc., Chem. Commun.
1994,
2103
54
Krizan TD.
Martin JC.
J. Am. Chem. Soc.
1983,
105:
6155
55
Hodgson DM.
Reynolds NJ.
Coote SJ.
Tetrahedron Lett.
2002,
43:
7895
56
Hodgson DM.
Bray CD.
Kindon ND.
J. Am. Chem. Soc.
2004,
126:
6870
57 There was a very small difference in chemical shift observed in the 1 H NMR spectra between the olefinic protons (ΔδH = 0.48 ppm for 56 ). Aldehyde enamines typically have ΔδH = 1.5-2.0 ppm: Kempf B.
Hampel N.
Ofial AR.
Mayr H.
Chem.-Eur. J.
2003,
9:
2209
58a
Crandall JK.
Lin L.-HC.
J. Am. Chem. Soc.
1967,
89:
4526
58b See also: Apparu M.
Barrelle M.
Tetrahedron Lett.
1976,
33:
2837
59 The reaction takes ca. 16 h to consume all of the starting epoxide and LTMP has a longer half life in t -BuOMe than in Et2 O: Kopka IE.
Fataftah ZA.
Rathke MW.
J. Org. Chem.
1987,
52:
448
60
Hodgson DM.
Chung YK.
Paris JM.
J. Am. Chem. Soc.
2004,
126:
8664
61
Hodgson DM.
Chung YK.
Paris J.-M.
Synthesis
2005,
2264
62
Shimizu M.
Fujimoto T.
Liu X.
Hiyama T.
Chem. Lett.
2004,
33:
438
63
Hodgson DM.
Fleming MJ.
Stanway SJ.
J. Am. Chem. Soc.
2004,
126:
12250
For recent examples, see:
64a
Capriati V.
Florio S.
Luisi R.
Salomone A.
Org. Lett.
2004,
4:
2445
64b
Capriati V.
Florio S.
Luisi R.
Nuzzo I.
J. Org. Chem.
2004,
69:
3330
64c Ref. 52.
65
Hodgson DM.
Bray CD.
Kindon ND.
Org. Lett.
2005,
7:
2305
66a
Jeong JU.
Tao B.
Sagasser I.
Henniges H.
Sharpless KB.
J. Am. Chem. Soc.
1998,
120:
6844
66b
Gontcharov AV.
Liu H.
Sharpless KB.
Org. Lett.
1999,
1:
783
67
Hodgson DM.
Štefane B.
Miles TJ.
Witherington J.
Chem. Commun.
2004,
2234
68
Beak P.
Wu S.
Yum EK.
Jun YM.
J. Org. Chem.
1994,
59:
276
69
Hodgson DM.
Humphreys PG.
Ward JG.
Org Lett.
2005,
7:
1153
70
Hodgson DM.
Miles SM.
Angew. Chem. Int. Ed.
2005,
in press
71
Mukaiyama T.
Tetrahedron
1999,
55:
8609